singe/thirdparty/openssl/oqs-provider/oqsprov/oqs_encode_key2any.c
2023-11-16 22:15:24 -06:00

1442 lines
60 KiB
C

// SPDX-License-Identifier: Apache-2.0 AND MIT
/*
* OQS OpenSSL 3 provider
*
* Code strongly inspired by OpenSSL endecoder.
*
* ToDo: Adding hybrid alg support
*/
#include <openssl/core.h>
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/crypto.h>
#include <openssl/params.h>
#include <openssl/asn1.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/x509.h>
#include <openssl/pkcs12.h> /* PKCS8_encrypt() */
#include <openssl/proverr.h>
#include <string.h>
#include "oqs_endecoder_local.h"
#ifdef NDEBUG
#define OQS_ENC_PRINTF(a)
#define OQS_ENC_PRINTF2(a, b)
#define OQS_ENC_PRINTF3(a, b, c)
#else
#define OQS_ENC_PRINTF(a) if (getenv("OQSENC")) printf(a)
#define OQS_ENC_PRINTF2(a, b) if (getenv("OQSENC")) printf(a, b)
#define OQS_ENC_PRINTF3(a, b, c) if (getenv("OQSENC")) printf(a, b, c)
#endif // NDEBUG
struct key2any_ctx_st {
PROV_OQS_CTX *provctx;
/* Set to 0 if parameters should not be saved (dsa only) */
int save_parameters;
/* Set to 1 if intending to encrypt/decrypt, otherwise 0 */
int cipher_intent;
EVP_CIPHER *cipher;
OSSL_PASSPHRASE_CALLBACK *pwcb;
void *pwcbarg;
};
typedef int check_key_type_fn(const void *key, int nid);
typedef int key_to_paramstring_fn(const void *key, int nid, int save,
void **str, int *strtype);
typedef int key_to_der_fn(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx);
typedef int write_bio_of_void_fn(BIO *bp, const void *x);
/* Free the blob allocated during key_to_paramstring_fn */
static void free_asn1_data(int type, void *data)
{
switch(type) {
case V_ASN1_OBJECT:
ASN1_OBJECT_free(data);
break;
case V_ASN1_SEQUENCE:
ASN1_STRING_free(data);
break;
}
}
static PKCS8_PRIV_KEY_INFO *key_to_p8info(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final PKCS#8 info */
PKCS8_PRIV_KEY_INFO *p8info = NULL;
OQS_ENC_PRINTF("OQS ENC provider: key_to_p8info called\n");
if ((p8info = PKCS8_PRIV_KEY_INFO_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !PKCS8_pkey_set0(p8info, OBJ_nid2obj(key_nid), 0,
// doesn't work with oqs-openssl:
// params_type, params,
// does work/interop:
V_ASN1_UNDEF, NULL,
der, derlen)) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
PKCS8_PRIV_KEY_INFO_free(p8info);
OPENSSL_free(der);
p8info = NULL;
}
return p8info;
}
static X509_SIG *p8info_to_encp8(PKCS8_PRIV_KEY_INFO *p8info,
struct key2any_ctx_st *ctx)
{
X509_SIG *p8 = NULL;
char kstr[PEM_BUFSIZE];
size_t klen = 0;
OSSL_LIB_CTX *libctx = PROV_OQS_LIBCTX_OF(ctx->provctx);
OQS_ENC_PRINTF("OQS ENC provider: p8info_to_encp8 called\n");
if (ctx->cipher == NULL || ctx->pwcb == NULL)
return NULL;
if (!ctx->pwcb(kstr, PEM_BUFSIZE, &klen, NULL, ctx->pwcbarg)) {
ERR_raise(ERR_LIB_USER, PROV_R_UNABLE_TO_GET_PASSPHRASE);
return NULL;
}
/* First argument == -1 means "standard" */
p8 = PKCS8_encrypt_ex(-1, ctx->cipher, kstr, klen, NULL, 0, 0, p8info, libctx, NULL);
OPENSSL_cleanse(kstr, klen);
return p8;
}
static X509_SIG *key_to_encp8(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d, struct key2any_ctx_st *ctx)
{
PKCS8_PRIV_KEY_INFO *p8info =
key_to_p8info(key, key_nid, params, params_type, k2d);
X509_SIG *p8 = NULL;
OQS_ENC_PRINTF("OQS ENC provider: key_to_encp8 called\n");
if (p8info == NULL) {
free_asn1_data(params_type, params);
} else {
p8 = p8info_to_encp8(p8info, ctx);
PKCS8_PRIV_KEY_INFO_free(p8info);
}
return p8;
}
static X509_PUBKEY *oqsx_key_to_pubkey(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final X509_PUBKEY */
X509_PUBKEY *xpk = NULL;
OQS_ENC_PRINTF2("OQS ENC provider: oqsx_key_to_pubkey called for NID %d\n", key_nid);
if ((xpk = X509_PUBKEY_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !X509_PUBKEY_set0_param(xpk, OBJ_nid2obj(key_nid),
V_ASN1_UNDEF, NULL, // as per logic in oqs_meth.c in oqs-openssl
der, derlen)) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
X509_PUBKEY_free(xpk);
OPENSSL_free(der);
xpk = NULL;
}
return xpk;
}
/*
* key_to_epki_* produce encoded output with the private key data in a
* EncryptedPrivateKeyInfo structure (defined by PKCS#8). They require
* that there's an intent to encrypt, anything else is an error.
*
* key_to_pki_* primarly produce encoded output with the private key data
* in a PrivateKeyInfo structure (also defined by PKCS#8). However, if
* there is an intent to encrypt the data, the corresponding key_to_epki_*
* function is used instead.
*
* key_to_spki_* produce encoded output with the public key data in an
* X.509 SubjectPublicKeyInfo.
*
* Key parameters don't have any defined envelopment of this kind, but are
* included in some manner in the output from the functions described above,
* either in the AlgorithmIdentifier's parameter field, or as part of the
* key data itself.
*/
static int key_to_epki_der_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_SIG *p8;
OQS_ENC_PRINTF("OQS ENC provider: key_to_epki_der_priv_bio called\n");
if (!ctx->cipher_intent)
return 0;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = i2d_PKCS8_bio(out, p8);
X509_SIG_free(p8);
return ret;
}
static int key_to_epki_pem_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_SIG *p8;
OQS_ENC_PRINTF("OQS ENC provider: key_to_epki_pem_priv_bio called\n");
if (!ctx->cipher_intent)
return 0;
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = PEM_write_bio_PKCS8(out, p8);
X509_SIG_free(p8);
return ret;
}
static int key_to_pki_der_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
PKCS8_PRIV_KEY_INFO *p8info;
OQS_ENC_PRINTF("OQS ENC provider: key_to_pki_der_priv_bio called\n");
if (ctx->cipher_intent)
return key_to_epki_der_priv_bio(out, key, key_nid, pemname,
p2s, k2d, ctx);
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8info);
else
free_asn1_data(strtype, str);
PKCS8_PRIV_KEY_INFO_free(p8info);
return ret;
}
static int key_to_pki_pem_priv_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
PKCS8_PRIV_KEY_INFO *p8info;
OQS_ENC_PRINTF("OQS ENC provider: key_to_pki_pem_priv_bio called\n");
if (ctx->cipher_intent)
return key_to_epki_pem_priv_bio(out, key, key_nid, pemname,
p2s, k2d, ctx);
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
p8info = key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8info);
else
free_asn1_data(strtype, str);
PKCS8_PRIV_KEY_INFO_free(p8info);
return ret;
}
static int key_to_spki_der_pub_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
OQSX_KEY* okey = (OQSX_KEY*)key;
X509_PUBKEY *xpk = NULL;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
OQS_ENC_PRINTF("OQS ENC provider: key_to_spki_der_pub_bio called\n");
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
xpk = oqsx_key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = i2d_X509_PUBKEY_bio(out, xpk);
X509_PUBKEY_free(xpk);
return ret;
}
static int key_to_spki_pem_pub_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
X509_PUBKEY *xpk = NULL;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
OQS_ENC_PRINTF("OQS ENC provider: key_to_spki_pem_pub_bio called\n");
if (p2s != NULL && !p2s(key, key_nid, ctx->save_parameters,
&str, &strtype))
return 0;
xpk = oqsx_key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = PEM_write_bio_X509_PUBKEY(out, xpk);
else
free_asn1_data(strtype, str);
/* Also frees |str| */
X509_PUBKEY_free(xpk);
return ret;
}
/*
* key_to_type_specific_* produce encoded output with type specific key data,
* no envelopment; the same kind of output as the type specific i2d_ and
* PEM_write_ functions, which is often a simple SEQUENCE of INTEGER.
*
* OpenSSL tries to discourage production of new keys in this form, because
* of the ambiguity when trying to recognise them, but can't deny that PKCS#1
* et al still are live standards.
*
* Note that these functions completely ignore p2s, and rather rely entirely
* on k2d to do the complete work.
*/
/*
static int key_to_type_specific_der_bio(BIO *out, const void *key,
int key_nid,
ossl_unused const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
unsigned char *der = NULL;
int derlen;
int ret;
OQS_ENC_PRINTF("OQS ENC provider: key_to_type_specific_der_bio called\n");
if ((derlen = k2d(key, &der)) <= 0) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
return 0;
}
ret = BIO_write(out, der, derlen);
OPENSSL_free(der);
return ret > 0;
}
#define key_to_type_specific_der_priv_bio key_to_type_specific_der_bio
#define key_to_type_specific_der_pub_bio key_to_type_specific_der_bio
#define key_to_type_specific_der_param_bio key_to_type_specific_der_bio
static int key_to_type_specific_pem_bio_cb(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
OQS_ENC_PRINTF("OQS ENC provider: key_to_type_specific_pem_bio_cb called \n");
return PEM_ASN1_write_bio(k2d, pemname, out, key, ctx->cipher,
NULL, 0, ctx->pwcb, ctx->pwcbarg) > 0;
}
static int key_to_type_specific_pem_priv_bio(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
OQS_ENC_PRINTF("OQS ENC provider: key_to_type_specific_pem_priv_bio called\n");
return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
p2s, k2d, ctx, ctx->pwcb, ctx->pwcbarg);
}
static int key_to_type_specific_pem_pub_bio(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
OQS_ENC_PRINTF("OQS ENC provider: key_to_type_specific_pem_pub_bio called\n");
return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
p2s, k2d, ctx, NULL, NULL);
}
#ifndef OPENSSL_NO_KEYPARAMS
static int key_to_type_specific_pem_param_bio(BIO *out, const void *key,
int key_nid, const char *pemname,
key_to_paramstring_fn *p2s,
i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
OQS_ENC_PRINTF("OQS ENC provider: key_to_type_specific_pem_param_bio called\n");
return key_to_type_specific_pem_bio_cb(out, key, key_nid, pemname,
p2s, k2d, ctx, NULL, NULL);
}
#endif
*/
/* ---------------------------------------------------------------------- */
static int prepare_oqsx_params(const void *oqsxkey, int nid, int save,
void **pstr, int *pstrtype)
{
ASN1_OBJECT *params = NULL;
OQSX_KEY *k = (OQSX_KEY*)oqsxkey;
OQS_ENC_PRINTF3("OQS ENC provider: prepare_oqsx_params called with nid %d (tlsname: %s)\n", nid, k->tls_name);
if (k->tls_name && OBJ_sn2nid(k->tls_name) != nid) {
ERR_raise(ERR_LIB_USER, OQSPROV_R_INVALID_KEY);
return 0;
}
if (nid != NID_undef) {
params = OBJ_nid2obj(nid);
if (params == NULL)
return 0;
}
else {
ERR_raise(ERR_LIB_USER, OQSPROV_R_MISSING_OID);
return 0;
}
if (OBJ_length(params) == 0) {
/* unexpected error */
ERR_raise(ERR_LIB_USER, OQSPROV_R_MISSING_OID);
ASN1_OBJECT_free(params);
return 0;
}
*pstr = params;
*pstrtype = V_ASN1_OBJECT;
return 1;
}
static int oqsx_spki_pub_to_der(const void *vxkey, unsigned char **pder)
{
const OQSX_KEY *oqsxkey = vxkey;
unsigned char *keyblob;
int ret = 0;
OQS_ENC_PRINTF("OQS ENC provider: oqsx_spki_pub_to_der called\n");
if (oqsxkey == NULL || oqsxkey->pubkey == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
#ifdef USE_ENCODING_LIB
if (oqsxkey->oqsx_encoding_ctx.encoding_ctx != NULL && oqsxkey->oqsx_encoding_ctx.encoding_impl != NULL) {
unsigned char *buf;
int buflen;
int ret = 0;
const OQSX_ENCODING_CTX* encoding_ctx = &oqsxkey->oqsx_encoding_ctx;
buflen = encoding_ctx->encoding_impl->crypto_publickeybytes;
buf = OPENSSL_secure_zalloc(buflen);
ret = qsc_encode(encoding_ctx->encoding_ctx, encoding_ctx->encoding_impl, oqsxkey->pubkey, &buf, 0, 0, 1);
if (ret != QSC_ENC_OK) return -1;
*pder = buf;
return buflen;
} else {
#endif
keyblob = OPENSSL_memdup(oqsxkey->pubkey, oqsxkey->pubkeylen);
if (keyblob == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
return 0;
}
*pder = keyblob;
return oqsxkey->pubkeylen;
#ifdef USE_ENCODING_LIB
}
#endif
}
static int oqsx_pki_priv_to_der(const void *vxkey, unsigned char **pder)
{
OQSX_KEY *oqsxkey = (OQSX_KEY *)vxkey;
unsigned char* buf = NULL;
int buflen = 0, privkeylen;
ASN1_OCTET_STRING oct;
int keybloblen;
OQS_ENC_PRINTF("OQS ENC provider: oqsx_pki_priv_to_der called\n");
// Encoding private _and_ public key concatenated ... seems unlogical and unnecessary,
// but is what oqs-openssl does, so we repeat it for interop... also from a security
// perspective not really smart to copy key material (side channel attacks, anyone?),
// but so be it for now (TBC).
if (oqsxkey == NULL || oqsxkey->privkey == NULL
#ifndef NOPUBKEY_IN_PRIVKEY
|| oqsxkey->pubkey == NULL
#endif
) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
// only concatenate private classic key (if any) and OQS private and public key
// NOT saving public classic key component (if any)
privkeylen = oqsxkey->privkeylen;
if (oqsxkey->numkeys > 1) { // hybrid
int actualprivkeylen;
DECODE_UINT32(actualprivkeylen, oqsxkey->privkey);
if (actualprivkeylen > oqsxkey->evp_info->length_private_key) {
ERR_raise(ERR_LIB_USER, OQSPROV_R_INVALID_ENCODING);
return 0;
}
privkeylen -= (oqsxkey->evp_info->length_private_key - actualprivkeylen);
}
#ifdef USE_ENCODING_LIB
if (oqsxkey->oqsx_encoding_ctx.encoding_ctx != NULL && oqsxkey->oqsx_encoding_ctx.encoding_impl != NULL) {
const OQSX_ENCODING_CTX* encoding_ctx = &oqsxkey->oqsx_encoding_ctx;
int ret = 0;
#ifdef NOPUBKEY_IN_PRIVKEY
int withoptional = (encoding_ctx->encoding_ctx->raw_private_key_encodes_public_key ? 1 : 0);
#else
int withoptional = 1;
#endif
buflen = (withoptional ? encoding_ctx->encoding_impl->crypto_secretkeybytes :
encoding_ctx->encoding_impl->crypto_secretkeybytes_nooptional);
buf = OPENSSL_secure_zalloc(buflen);
ret = qsc_encode(encoding_ctx->encoding_ctx, encoding_ctx->encoding_impl,
oqsxkey->comp_pubkey[oqsxkey->numkeys-1], 0,
oqsxkey->privkey, &buf, withoptional);
if (ret != QSC_ENC_OK) return -1;
} else {
#endif
#ifdef NOPUBKEY_IN_PRIVKEY
buflen = privkeylen;
buf = OPENSSL_secure_malloc(buflen);
OQS_ENC_PRINTF2("OQS ENC provider: saving privkey of length %d\n", buflen);
memcpy(buf, oqsxkey->privkey, privkeylen);
#else
buflen = privkeylen+oqsx_key_get_oqs_public_key_len(oqsxkey);
buf = OPENSSL_secure_malloc(buflen);
OQS_ENC_PRINTF2("OQS ENC provider: saving priv+pubkey of length %d\n", buflen);
memcpy(buf, oqsxkey->privkey, privkeylen);
memcpy(buf+privkeylen, oqsxkey->comp_pubkey[oqsxkey->numkeys-1], oqsx_key_get_oqs_public_key_len(oqsxkey));
#endif
#ifdef USE_ENCODING_LIB
}
#endif
oct.data = buf;
oct.length = buflen;
// more logical:
//oct.data = oqsxkey->privkey;
//oct.length = oqsxkey->privkeylen;
oct.flags = 0;
keybloblen = i2d_ASN1_OCTET_STRING(&oct, pder);
if (keybloblen < 0) {
ERR_raise(ERR_LIB_USER, ERR_R_MALLOC_FAILURE);
keybloblen = 0; // signal error
}
OPENSSL_secure_clear_free(buf, buflen);
return keybloblen;
}
# define oqsx_epki_priv_to_der oqsx_pki_priv_to_der
/*
* OQSX only has PKCS#8 / SubjectPublicKeyInfo
* representation, so we don't define oqsx_type_specific_[priv,pub,params]_to_der.
*/
# define oqsx_check_key_type NULL
// OQS provider uses NIDs generated at load time as EVP_type identifiers
// so initially this must be 0 and set to a real value by OBJ_sn2nid later
///// OQS_TEMPLATE_FRAGMENT_ENCODER_DEFINES_START
# define dilithium2_evp_type 0
# define dilithium2_input_type "dilithium2"
# define dilithium2_pem_type "dilithium2"
# define p256_dilithium2_evp_type 0
# define p256_dilithium2_input_type "p256_dilithium2"
# define p256_dilithium2_pem_type "p256_dilithium2"
# define rsa3072_dilithium2_evp_type 0
# define rsa3072_dilithium2_input_type "rsa3072_dilithium2"
# define rsa3072_dilithium2_pem_type "rsa3072_dilithium2"
# define dilithium3_evp_type 0
# define dilithium3_input_type "dilithium3"
# define dilithium3_pem_type "dilithium3"
# define p384_dilithium3_evp_type 0
# define p384_dilithium3_input_type "p384_dilithium3"
# define p384_dilithium3_pem_type "p384_dilithium3"
# define dilithium5_evp_type 0
# define dilithium5_input_type "dilithium5"
# define dilithium5_pem_type "dilithium5"
# define p521_dilithium5_evp_type 0
# define p521_dilithium5_input_type "p521_dilithium5"
# define p521_dilithium5_pem_type "p521_dilithium5"
# define falcon512_evp_type 0
# define falcon512_input_type "falcon512"
# define falcon512_pem_type "falcon512"
# define p256_falcon512_evp_type 0
# define p256_falcon512_input_type "p256_falcon512"
# define p256_falcon512_pem_type "p256_falcon512"
# define rsa3072_falcon512_evp_type 0
# define rsa3072_falcon512_input_type "rsa3072_falcon512"
# define rsa3072_falcon512_pem_type "rsa3072_falcon512"
# define falcon1024_evp_type 0
# define falcon1024_input_type "falcon1024"
# define falcon1024_pem_type "falcon1024"
# define p521_falcon1024_evp_type 0
# define p521_falcon1024_input_type "p521_falcon1024"
# define p521_falcon1024_pem_type "p521_falcon1024"
# define sphincssha2128fsimple_evp_type 0
# define sphincssha2128fsimple_input_type "sphincssha2128fsimple"
# define sphincssha2128fsimple_pem_type "sphincssha2128fsimple"
# define p256_sphincssha2128fsimple_evp_type 0
# define p256_sphincssha2128fsimple_input_type "p256_sphincssha2128fsimple"
# define p256_sphincssha2128fsimple_pem_type "p256_sphincssha2128fsimple"
# define rsa3072_sphincssha2128fsimple_evp_type 0
# define rsa3072_sphincssha2128fsimple_input_type "rsa3072_sphincssha2128fsimple"
# define rsa3072_sphincssha2128fsimple_pem_type "rsa3072_sphincssha2128fsimple"
# define sphincssha2128ssimple_evp_type 0
# define sphincssha2128ssimple_input_type "sphincssha2128ssimple"
# define sphincssha2128ssimple_pem_type "sphincssha2128ssimple"
# define p256_sphincssha2128ssimple_evp_type 0
# define p256_sphincssha2128ssimple_input_type "p256_sphincssha2128ssimple"
# define p256_sphincssha2128ssimple_pem_type "p256_sphincssha2128ssimple"
# define rsa3072_sphincssha2128ssimple_evp_type 0
# define rsa3072_sphincssha2128ssimple_input_type "rsa3072_sphincssha2128ssimple"
# define rsa3072_sphincssha2128ssimple_pem_type "rsa3072_sphincssha2128ssimple"
# define sphincssha2192fsimple_evp_type 0
# define sphincssha2192fsimple_input_type "sphincssha2192fsimple"
# define sphincssha2192fsimple_pem_type "sphincssha2192fsimple"
# define p384_sphincssha2192fsimple_evp_type 0
# define p384_sphincssha2192fsimple_input_type "p384_sphincssha2192fsimple"
# define p384_sphincssha2192fsimple_pem_type "p384_sphincssha2192fsimple"
# define sphincsshake128fsimple_evp_type 0
# define sphincsshake128fsimple_input_type "sphincsshake128fsimple"
# define sphincsshake128fsimple_pem_type "sphincsshake128fsimple"
# define p256_sphincsshake128fsimple_evp_type 0
# define p256_sphincsshake128fsimple_input_type "p256_sphincsshake128fsimple"
# define p256_sphincsshake128fsimple_pem_type "p256_sphincsshake128fsimple"
# define rsa3072_sphincsshake128fsimple_evp_type 0
# define rsa3072_sphincsshake128fsimple_input_type "rsa3072_sphincsshake128fsimple"
# define rsa3072_sphincsshake128fsimple_pem_type "rsa3072_sphincsshake128fsimple"
///// OQS_TEMPLATE_FRAGMENT_ENCODER_DEFINES_END
/* ---------------------------------------------------------------------- */
static OSSL_FUNC_decoder_newctx_fn key2any_newctx;
static OSSL_FUNC_decoder_freectx_fn key2any_freectx;
static void *key2any_newctx(void *provctx)
{
struct key2any_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
OQS_ENC_PRINTF("OQS ENC provider: key2any_newctx called\n");
if (ctx != NULL) {
ctx->provctx = provctx;
ctx->save_parameters = 1;
}
return ctx;
}
static void key2any_freectx(void *vctx)
{
struct key2any_ctx_st *ctx = vctx;
OQS_ENC_PRINTF("OQS ENC provider: key2any_freectx called\n");
EVP_CIPHER_free(ctx->cipher);
OPENSSL_free(ctx);
}
static const OSSL_PARAM *key2any_settable_ctx_params(ossl_unused void *provctx)
{
static const OSSL_PARAM settables[] = {
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END,
};
OQS_ENC_PRINTF("OQS ENC provider: key2any_settable_ctx_params called\n");
return settables;
}
static int key2any_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
struct key2any_ctx_st *ctx = vctx;
OSSL_LIB_CTX *libctx = ctx->provctx->libctx;
const OSSL_PARAM *cipherp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_CIPHER);
const OSSL_PARAM *propsp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_PROPERTIES);
const OSSL_PARAM *save_paramsp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_SAVE_PARAMETERS);
OQS_ENC_PRINTF("OQS ENC provider: key2any_set_ctx_params called\n");
if (cipherp != NULL) {
const char *ciphername = NULL;
const char *props = NULL;
if (!OSSL_PARAM_get_utf8_string_ptr(cipherp, &ciphername))
return 0;
OQS_ENC_PRINTF2(" setting cipher: %s\n", ciphername);
if (propsp != NULL && !OSSL_PARAM_get_utf8_string_ptr(propsp, &props))
return 0;
EVP_CIPHER_free(ctx->cipher);
ctx->cipher = NULL;
ctx->cipher_intent = ciphername != NULL;
if (ciphername != NULL
&& ((ctx->cipher =
EVP_CIPHER_fetch(libctx, ciphername, props)) == NULL)) {
return 0;
}
}
if (save_paramsp != NULL) {
if (!OSSL_PARAM_get_int(save_paramsp, &ctx->save_parameters)) {
return 0;
}
}
OQS_ENC_PRINTF2(" cipher set to %p: \n", ctx->cipher);
return 1;
}
static int key2any_check_selection(int selection, int selection_mask)
{
/*
* The selections are kinda sorta "levels", i.e. each selection given
* here is assumed to include those following.
*/
int checks[] = {
OSSL_KEYMGMT_SELECT_PRIVATE_KEY,
OSSL_KEYMGMT_SELECT_PUBLIC_KEY,
OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
};
size_t i;
OQS_ENC_PRINTF3("OQS ENC provider: key2any_check_selection called with selection %d (%d)\n",selection, selection_mask);
/* The decoder implementations made here support guessing */
if (selection == 0)
return 1;
for (i = 0; i < OSSL_NELEM(checks); i++) {
int check1 = (selection & checks[i]) != 0;
int check2 = (selection_mask & checks[i]) != 0;
/*
* If the caller asked for the currently checked bit(s), return
* whether the decoder description says it's supported.
*/
if (check1) {
OQS_ENC_PRINTF2("OQS ENC provider: key2any_check_selection returns %d\n", check2);
return check2;
}
}
/* This should be dead code, but just to be safe... */
return 0;
}
static int key2any_encode(struct key2any_ctx_st *ctx, OSSL_CORE_BIO *cout,
const void *key, const char* typestr, const char *pemname,
key_to_der_fn *writer,
OSSL_PASSPHRASE_CALLBACK *pwcb, void *pwcbarg,
key_to_paramstring_fn *key2paramstring,
i2d_of_void *key2der)
{
int ret = 0;
int type = OBJ_sn2nid(typestr);
OQSX_KEY *oqsk = (OQSX_KEY*)key;
OQS_ENC_PRINTF3("OQS ENC provider: key2any_encode called with type %d (%s)\n", type, typestr);
OQS_ENC_PRINTF2("OQS ENC provider: key2any_encode called with pemname %s\n", pemname);
if (key == NULL || type <= 0) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
} else if (writer != NULL) {
// Is ref counting really needed? For now, do it as per https://beta.openssl.org/docs/manmaster/man3/BIO_new_from_core_bio.html:
BIO *out = oqs_bio_new_from_core_bio(ctx->provctx, cout);
if (out != NULL) {
ctx->pwcb = pwcb;
ctx->pwcbarg = pwcbarg;
ret = writer(out, key, type, pemname, key2paramstring, key2der, ctx);
}
BIO_free(out);
} else {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT);
}
OQS_ENC_PRINTF2(" encode result: %d\n", ret);
return ret;
}
#define DO_PRIVATE_KEY_selection_mask OSSL_KEYMGMT_SELECT_PRIVATE_KEY
#define DO_PRIVATE_KEY(impl, type, kind, output) \
if ((selection & DO_PRIVATE_KEY_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PRIVATE KEY", \
key_to_##kind##_##output##_priv_bio, \
cb, cbarg, prepare_##type##_params, \
type##_##kind##_priv_to_der);
#define DO_PUBLIC_KEY_selection_mask OSSL_KEYMGMT_SELECT_PUBLIC_KEY
#define DO_PUBLIC_KEY(impl, type, kind, output) \
if ((selection & DO_PUBLIC_KEY_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PUBLIC KEY", \
key_to_##kind##_##output##_pub_bio, \
cb, cbarg, prepare_##type##_params, \
type##_##kind##_pub_to_der);
#define DO_PARAMETERS_selection_mask OSSL_KEYMGMT_SELECT_ALL_PARAMETERS
#define DO_PARAMETERS(impl, type, kind, output) \
if ((selection & DO_PARAMETERS_selection_mask) != 0) \
return key2any_encode(ctx, cout, key, impl##_pem_type, \
impl##_pem_type " PARAMETERS", \
key_to_##kind##_##output##_param_bio, \
NULL, NULL, NULL, \
type##_##kind##_params_to_der);
/*-
* Implement the kinds of output structure that can be produced. They are
* referred to by name, and for each name, the following macros are defined
* (braces not included):
*
* DO_{kind}_selection_mask
*
* A mask of selection bits that must not be zero. This is used as a
* selection criterion for each implementation.
* This mask must never be zero.
*
* DO_{kind}
*
* The performing macro. It must use the DO_ macros defined above,
* always in this order:
*
* - DO_PRIVATE_KEY
* - DO_PUBLIC_KEY
* - DO_PARAMETERS
*
* Any of those may be omitted, but the relative order must still be
* the same.
*/
/*
* PKCS#8 defines two structures for private keys only:
* - PrivateKeyInfo (raw unencrypted form)
* - EncryptedPrivateKeyInfo (encrypted wrapping)
*
* To allow a certain amount of flexibility, we allow the routines
* for PrivateKeyInfo to also produce EncryptedPrivateKeyInfo if a
* passphrase callback has been passed to them.
*/
#define DO_PrivateKeyInfo_selection_mask DO_PRIVATE_KEY_selection_mask
#define DO_PrivateKeyInfo(impl, type, output) \
DO_PRIVATE_KEY(impl, type, pki, output)
#define DO_EncryptedPrivateKeyInfo_selection_mask DO_PRIVATE_KEY_selection_mask
#define DO_EncryptedPrivateKeyInfo(impl, type, output) \
DO_PRIVATE_KEY(impl, type, epki, output)
/* SubjectPublicKeyInfo is a structure for public keys only */
#define DO_SubjectPublicKeyInfo_selection_mask DO_PUBLIC_KEY_selection_mask
#define DO_SubjectPublicKeyInfo(impl, type, output) \
DO_PUBLIC_KEY(impl, type, spki, output)
/*
* "type-specific" is a uniform name for key type specific output for private
* and public keys as well as key parameters. This is used internally in
* libcrypto so it doesn't have to have special knowledge about select key
* types, but also when no better name has been found. If there are more
* expressive DO_ names above, those are preferred.
*
* Three forms exist:
*
* - type_specific_keypair Only supports private and public key
* - type_specific_params Only supports parameters
* - type_specific Supports all parts of an EVP_PKEY
* - type_specific_no_pub Supports all parts of an EVP_PKEY
* except public key
*/
#define DO_type_specific_params_selection_mask DO_PARAMETERS_selection_mask
#define DO_type_specific_params(impl, type, output) \
DO_PARAMETERS(impl, type, type_specific, output)
#define DO_type_specific_keypair_selection_mask \
( DO_PRIVATE_KEY_selection_mask | DO_PUBLIC_KEY_selection_mask )
#define DO_type_specific_keypair(impl, type, output) \
DO_PRIVATE_KEY(impl, type, type_specific, output) \
DO_PUBLIC_KEY(impl, type, type_specific, output)
#define DO_type_specific_selection_mask \
( DO_type_specific_keypair_selection_mask \
| DO_type_specific_params_selection_mask )
#define DO_type_specific(impl, type, output) \
DO_type_specific_keypair(impl, type, output) \
DO_type_specific_params(impl, type, output)
#define DO_type_specific_no_pub_selection_mask \
( DO_PRIVATE_KEY_selection_mask | DO_PARAMETERS_selection_mask)
#define DO_type_specific_no_pub(impl, type, output) \
DO_PRIVATE_KEY(impl, type, type_specific, output) \
DO_type_specific_params(impl, type, output)
/*
* MAKE_ENCODER is the single driver for creating OSSL_DISPATCH tables.
* It takes the following arguments:
*
* impl This is the key type name that's being implemented.
* type This is the type name for the set of functions that implement
* the key type. For example, ed25519, ed448, x25519 and x448
* are all implemented with the exact same set of functions.
* kind What kind of support to implement. These translate into
* the DO_##kind macros above.
* output The output type to implement. may be der or pem.
*
* The resulting OSSL_DISPATCH array gets the following name (expressed in
* C preprocessor terms) from those arguments:
*
* oqs_##impl##_to_##kind##_##output##_encoder_functions
*/
#define MAKE_ENCODER(impl, type, kind, output) \
static OSSL_FUNC_encoder_import_object_fn \
impl##_to_##kind##_##output##_import_object; \
static OSSL_FUNC_encoder_free_object_fn \
impl##_to_##kind##_##output##_free_object; \
static OSSL_FUNC_encoder_encode_fn \
impl##_to_##kind##_##output##_encode; \
\
static void * \
impl##_to_##kind##_##output##_import_object(void *vctx, int selection, \
const OSSL_PARAM params[]) \
{ \
struct key2any_ctx_st *ctx = vctx; \
\
OQS_ENC_PRINTF("OQS ENC provider: _import_object called\n"); \
return oqs_prov_import_key(oqs_##impl##_keymgmt_functions, \
ctx->provctx, selection, params); \
} \
static void impl##_to_##kind##_##output##_free_object(void *key) \
{ \
OQS_ENC_PRINTF("OQS ENC provider: _free_object called\n"); \
oqs_prov_free_key(oqs_##impl##_keymgmt_functions, key); \
} \
static int impl##_to_##kind##_##output##_does_selection(void *ctx, \
int selection) \
{ \
OQS_ENC_PRINTF("OQS ENC provider: _does_selection called\n"); \
return key2any_check_selection(selection, \
DO_##kind##_selection_mask); \
} \
static int \
impl##_to_##kind##_##output##_encode(void *ctx, OSSL_CORE_BIO *cout, \
const void *key, \
const OSSL_PARAM key_abstract[], \
int selection, \
OSSL_PASSPHRASE_CALLBACK *cb, \
void *cbarg) \
{ \
/* We don't deal with abstract objects */ \
OQS_ENC_PRINTF("OQS ENC provider: _encode called\n"); \
if (key_abstract != NULL) { \
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
DO_##kind(impl, type, output) \
\
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
const OSSL_DISPATCH \
oqs_##impl##_to_##kind##_##output##_encoder_functions[] = { \
{ OSSL_FUNC_ENCODER_NEWCTX, \
(void (*)(void))key2any_newctx }, \
{ OSSL_FUNC_ENCODER_FREECTX, \
(void (*)(void))key2any_freectx }, \
{ OSSL_FUNC_ENCODER_SETTABLE_CTX_PARAMS, \
(void (*)(void))key2any_settable_ctx_params }, \
{ OSSL_FUNC_ENCODER_SET_CTX_PARAMS, \
(void (*)(void))key2any_set_ctx_params }, \
{ OSSL_FUNC_ENCODER_DOES_SELECTION, \
(void (*)(void))impl##_to_##kind##_##output##_does_selection }, \
{ OSSL_FUNC_ENCODER_IMPORT_OBJECT, \
(void (*)(void))impl##_to_##kind##_##output##_import_object }, \
{ OSSL_FUNC_ENCODER_FREE_OBJECT, \
(void (*)(void))impl##_to_##kind##_##output##_free_object }, \
{ OSSL_FUNC_ENCODER_ENCODE, \
(void (*)(void))impl##_to_##kind##_##output##_encode }, \
{ 0, NULL } \
}
/* ---------------------------------------------------------------------- */
/* steal from openssl/providers/implementations/encode_decode/encode_key2text.c */
#define LABELED_BUF_PRINT_WIDTH 15
static int print_labeled_buf(BIO *out, const char *label,
const unsigned char *buf, size_t buflen)
{
size_t i;
if (BIO_printf(out, "%s\n", label) <= 0)
return 0;
for (i = 0; i < buflen; i++) {
if ((i % LABELED_BUF_PRINT_WIDTH) == 0) {
if (i > 0 && BIO_printf(out, "\n") <= 0)
return 0;
if (BIO_printf(out, " ") <= 0)
return 0;
}
if (BIO_printf(out, "%02x%s", buf[i],
(i == buflen - 1) ? "" : ":") <= 0)
return 0;
}
if (BIO_printf(out, "\n") <= 0)
return 0;
return 1;
}
static int oqsx_to_text(BIO *out, const void *key, int selection)
{
OQSX_KEY* okey = (OQSX_KEY*)key;
int is_hybrid = 0;
if (out == NULL || okey == NULL) {
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
if (okey->privkey == NULL) {
ERR_raise(ERR_LIB_USER, PROV_R_NOT_A_PRIVATE_KEY);
return 0;
}
switch (okey->keytype) {
case KEY_TYPE_SIG:
case KEY_TYPE_KEM:
if (BIO_printf(out, "%s private key:\n", okey->tls_name) <= 0)
return 0;
break;
case KEY_TYPE_ECP_HYB_KEM:
case KEY_TYPE_ECX_HYB_KEM:
case KEY_TYPE_HYB_SIG:
is_hybrid = 1;
if (BIO_printf(out, "%s hybrid private key:\n", okey->tls_name) <= 0)
return 0;
break;
default:
ERR_raise(ERR_LIB_USER, OQSPROV_R_INVALID_KEY);
return 0;
}
} else if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
if (okey->pubkey == NULL) {
ERR_raise(ERR_LIB_USER, PROV_R_NOT_A_PUBLIC_KEY);
return 0;
}
switch (okey->keytype) {
case KEY_TYPE_SIG:
case KEY_TYPE_KEM:
if (BIO_printf(out, "%s public key:\n", okey->tls_name) <= 0)
return 0;
break;
case KEY_TYPE_ECP_HYB_KEM:
case KEY_TYPE_ECX_HYB_KEM:
case KEY_TYPE_HYB_SIG:
is_hybrid = 1;
if (BIO_printf(out, "%s hybrid public key:\n", okey->tls_name) <= 0)
return 0;
break;
default:
ERR_raise(ERR_LIB_USER, OQSPROV_R_INVALID_KEY);
return 0;
}
}
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
int classic_key_len = 0;
if (okey->numkeys > 1) {
char classic_label[200];
sprintf(classic_label, "%s key material:", OBJ_nid2sn(okey->evp_info->nid));
DECODE_UINT32(classic_key_len, okey->privkey);
if (!print_labeled_buf(out, classic_label,
okey->comp_privkey[0],
classic_key_len))
return 0;
}
/* finally print pure PQ key */
if (!print_labeled_buf(out, "PQ key material:", okey->comp_privkey[okey->numkeys-1],
okey->privkeylen-classic_key_len-SIZE_OF_UINT32))
return 0;
}
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
int classic_key_len = 0;
if (okey->numkeys > 1) {
char classic_label[200];
DECODE_UINT32(classic_key_len, okey->pubkey);
sprintf(classic_label, "%s key material:", OBJ_nid2sn(okey->evp_info->nid));
if (!print_labeled_buf(out, classic_label,
okey->comp_pubkey[0],
classic_key_len))
return 0;
}
/* finally print pure PQ key */
if (!print_labeled_buf(out, "PQ key material:", okey->comp_pubkey[okey->numkeys-1],
okey->pubkeylen-classic_key_len-SIZE_OF_UINT32))
return 0;
}
return 1;
}
static void *key2text_newctx(void *provctx)
{
return provctx;
}
static void key2text_freectx(ossl_unused void *vctx)
{
}
static int key2text_encode(void *vctx, const void *key, int selection,
OSSL_CORE_BIO *cout,
int (*key2text)(BIO *out, const void *key,
int selection),
OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg)
{
BIO *out = oqs_bio_new_from_core_bio(vctx, cout);
int ret;
if (out == NULL)
return 0;
ret = key2text(out, key, selection);
BIO_free(out);
return ret;
}
#define MAKE_TEXT_ENCODER(impl) \
static OSSL_FUNC_encoder_import_object_fn \
impl##2text_import_object; \
static OSSL_FUNC_encoder_free_object_fn \
impl##2text_free_object; \
static OSSL_FUNC_encoder_encode_fn impl##2text_encode; \
\
static void *impl##2text_import_object(void *ctx, int selection, \
const OSSL_PARAM params[]) \
{ \
return oqs_prov_import_key(oqs_##impl##_keymgmt_functions, \
ctx, selection, params); \
} \
static void impl##2text_free_object(void *key) \
{ \
oqs_prov_free_key(oqs_##impl##_keymgmt_functions, key); \
} \
static int impl##2text_encode(void *vctx, OSSL_CORE_BIO *cout, \
const void *key, \
const OSSL_PARAM key_abstract[], \
int selection, \
OSSL_PASSPHRASE_CALLBACK *cb, \
void *cbarg) \
{ \
/* We don't deal with abstract objects */ \
if (key_abstract != NULL) { \
ERR_raise(ERR_LIB_USER, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
return key2text_encode(vctx, key, selection, cout, \
oqsx_to_text, cb, cbarg); \
} \
const OSSL_DISPATCH oqs_##impl##_to_text_encoder_functions[] = { \
{ OSSL_FUNC_ENCODER_NEWCTX, \
(void (*)(void))key2text_newctx }, \
{ OSSL_FUNC_ENCODER_FREECTX, \
(void (*)(void))key2text_freectx }, \
{ OSSL_FUNC_ENCODER_IMPORT_OBJECT, \
(void (*)(void))impl##2text_import_object }, \
{ OSSL_FUNC_ENCODER_FREE_OBJECT, \
(void (*)(void))impl##2text_free_object }, \
{ OSSL_FUNC_ENCODER_ENCODE, \
(void (*)(void))impl##2text_encode }, \
{ 0, NULL } \
}
/*
* Replacements for i2d_{TYPE}PrivateKey, i2d_{TYPE}PublicKey,
* i2d_{TYPE}params, as they exist.
*/
/*
* PKCS#8 and SubjectPublicKeyInfo support. This may duplicate some of the
* implementations specified above, but are more specific.
* The SubjectPublicKeyInfo implementations also replace the
* PEM_write_bio_{TYPE}_PUBKEY functions.
* For PEM, these are expected to be used by PEM_write_bio_PrivateKey(),
* PEM_write_bio_PUBKEY() and PEM_write_bio_Parameters().
*/
///// OQS_TEMPLATE_FRAGMENT_ENCODER_MAKE_START
MAKE_ENCODER(dilithium2, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(dilithium2, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(dilithium2, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(dilithium2, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(dilithium2, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(dilithium2, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(dilithium2);
MAKE_ENCODER(p256_dilithium2, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p256_dilithium2, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p256_dilithium2, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p256_dilithium2, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p256_dilithium2, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p256_dilithium2, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p256_dilithium2);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(rsa3072_dilithium2, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(rsa3072_dilithium2);
MAKE_ENCODER(dilithium3, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(dilithium3, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(dilithium3, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(dilithium3, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(dilithium3, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(dilithium3, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(dilithium3);
MAKE_ENCODER(p384_dilithium3, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p384_dilithium3, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p384_dilithium3, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p384_dilithium3, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p384_dilithium3, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p384_dilithium3, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p384_dilithium3);
MAKE_ENCODER(dilithium5, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(dilithium5, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(dilithium5, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(dilithium5, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(dilithium5, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(dilithium5, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(dilithium5);
MAKE_ENCODER(p521_dilithium5, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p521_dilithium5, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p521_dilithium5, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p521_dilithium5, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p521_dilithium5, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p521_dilithium5, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p521_dilithium5);
MAKE_ENCODER(falcon512, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(falcon512, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(falcon512, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(falcon512, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(falcon512, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(falcon512, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(falcon512);
MAKE_ENCODER(p256_falcon512, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p256_falcon512, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p256_falcon512, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p256_falcon512, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p256_falcon512, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p256_falcon512, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p256_falcon512);
MAKE_ENCODER(rsa3072_falcon512, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_falcon512, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_falcon512, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_falcon512, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_falcon512, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(rsa3072_falcon512, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(rsa3072_falcon512);
MAKE_ENCODER(falcon1024, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(falcon1024, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(falcon1024, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(falcon1024, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(falcon1024, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(falcon1024, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(falcon1024);
MAKE_ENCODER(p521_falcon1024, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p521_falcon1024, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p521_falcon1024, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p521_falcon1024, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p521_falcon1024, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p521_falcon1024, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p521_falcon1024);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(sphincssha2128fsimple);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p256_sphincssha2128fsimple);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(rsa3072_sphincssha2128fsimple);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(sphincssha2128ssimple);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p256_sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p256_sphincssha2128ssimple);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincssha2128ssimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(rsa3072_sphincssha2128ssimple);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(sphincssha2192fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(sphincssha2192fsimple);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p384_sphincssha2192fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p384_sphincssha2192fsimple);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(sphincsshake128fsimple);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(p256_sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(p256_sphincsshake128fsimple);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, EncryptedPrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, PrivateKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, PrivateKeyInfo, pem);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, der);
MAKE_ENCODER(rsa3072_sphincsshake128fsimple, oqsx, SubjectPublicKeyInfo, pem);
MAKE_TEXT_ENCODER(rsa3072_sphincsshake128fsimple);
///// OQS_TEMPLATE_FRAGMENT_ENCODER_MAKE_END