singe/thirdparty/SDL2_image/external/libjxl/tools/ssimulacra.cc
2023-10-23 19:38:18 -05:00

325 lines
11 KiB
C++

// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Re-implementation of //third_party/ssimulacra/ssimulacra.cpp using jxl's
// ImageF library instead of opencv.
#include "tools/ssimulacra.h"
#include <cmath>
#include "lib/jxl/gauss_blur.h"
#include "lib/jxl/image_ops.h"
namespace ssimulacra {
namespace {
using jxl::Image3F;
using jxl::ImageF;
static const float kC1 = 0.0001f;
static const float kC2 = 0.0004f;
static const int kNumScales = 6;
// Premultiplied by chroma weight 0.2
static const double kScaleWeights[kNumScales][3] = {
{0.04480, 0.00300, 0.00300}, {0.28560, 0.00896, 0.00896},
{0.30010, 0.05712, 0.05712}, {0.23630, 0.06002, 0.06002},
{0.13330, 0.06726, 0.06726}, {0.10000, 0.05000, 0.05000},
};
// Premultiplied by min weights 0.1, 0.005, 0.005
const double kMinScaleWeights[kNumScales][3] = {
{0.02000, 0.00005, 0.00005}, {0.03000, 0.00025, 0.00025},
{0.02500, 0.00100, 0.00100}, {0.02000, 0.00150, 0.00150},
{0.01200, 0.00175, 0.00175}, {0.00500, 0.00175, 0.00175},
};
const double kEdgeWeight[3] = {1.5, 0.1, 0.1};
const double kGridWeight[3] = {1.0, 0.1, 0.1};
inline void Rgb2Lab(float r, float g, float b, float* L, float* A, float* B) {
const float epsilon = 0.00885645167903563081f;
const float s = 0.13793103448275862068f;
const float k = 7.78703703703703703703f;
float fx = (r * 0.43393624408206207259f + g * 0.37619779063650710152f +
b * 0.18983429773803261441f);
float fy = (r * 0.2126729f + g * 0.7151522f + b * 0.0721750f);
float fz = (r * 0.01775381083562901744f + g * 0.10945087235996326905f +
b * 0.87263921028466483011f);
const float gamma = 1.0f / 3.0f;
float X = (fx > epsilon) ? powf(fx, gamma) - s : k * fx;
float Y = (fy > epsilon) ? powf(fy, gamma) - s : k * fy;
float Z = (fz > epsilon) ? powf(fz, gamma) - s : k * fz;
*L = Y * 1.16f;
*A = (0.39181818181818181818f + 2.27272727272727272727f * (X - Y));
*B = (0.49045454545454545454f + 0.90909090909090909090f * (Y - Z));
}
Image3F Rgb2Lab(const Image3F& in) {
Image3F out(in.xsize(), in.ysize());
for (size_t y = 0; y < in.ysize(); ++y) {
const float* JXL_RESTRICT row_in0 = in.PlaneRow(0, y);
const float* JXL_RESTRICT row_in1 = in.PlaneRow(1, y);
const float* JXL_RESTRICT row_in2 = in.PlaneRow(2, y);
float* JXL_RESTRICT row_out0 = out.PlaneRow(0, y);
float* JXL_RESTRICT row_out1 = out.PlaneRow(1, y);
float* JXL_RESTRICT row_out2 = out.PlaneRow(2, y);
for (size_t x = 0; x < in.xsize(); ++x) {
Rgb2Lab(row_in0[x], row_in1[x], row_in2[x], &row_out0[x], &row_out1[x],
&row_out2[x]);
}
}
return out;
}
Image3F Downsample(const Image3F& in, size_t fx, size_t fy) {
const size_t out_xsize = (in.xsize() + fx - 1) / fx;
const size_t out_ysize = (in.ysize() + fy - 1) / fy;
Image3F out(out_xsize, out_ysize);
const float normalize = 1.0f / (fx * fy);
for (size_t c = 0; c < 3; ++c) {
for (size_t oy = 0; oy < out_ysize; ++oy) {
float* JXL_RESTRICT row_out = out.PlaneRow(c, oy);
for (size_t ox = 0; ox < out_xsize; ++ox) {
float sum = 0.0f;
for (size_t iy = 0; iy < fy; ++iy) {
for (size_t ix = 0; ix < fx; ++ix) {
const size_t x = std::min(ox * fx + ix, in.xsize() - 1);
const size_t y = std::min(oy * fy + iy, in.ysize() - 1);
sum += in.PlaneRow(c, y)[x];
}
}
row_out[ox] = sum * normalize;
}
}
}
return out;
}
void Multiply(const Image3F& a, const Image3F& b, Image3F* mul) {
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < a.ysize(); ++y) {
const float* JXL_RESTRICT in1 = a.PlaneRow(c, y);
const float* JXL_RESTRICT in2 = b.PlaneRow(c, y);
float* JXL_RESTRICT out = mul->PlaneRow(c, y);
for (size_t x = 0; x < a.xsize(); ++x) {
out[x] = in1[x] * in2[x];
}
}
}
}
void RowColAvgP2(const ImageF& in, double* rp2, double* cp2) {
std::vector<double> ravg(in.ysize());
std::vector<double> cavg(in.xsize());
for (size_t y = 0; y < in.ysize(); ++y) {
auto row = in.Row(y);
for (size_t x = 0; x < in.xsize(); ++x) {
const float val = row[x];
ravg[y] += val;
cavg[x] += val;
}
}
std::sort(ravg.begin(), ravg.end());
std::sort(cavg.begin(), cavg.end());
*rp2 = ravg[ravg.size() / 50] / in.xsize();
*cp2 = cavg[cavg.size() / 50] / in.ysize();
}
class StreamingAverage {
public:
void Add(const float v) {
// Numerically stable method.
double delta = v - result_;
n_ += 1;
result_ += delta / n_;
}
double Get() const { return result_; }
private:
double result_ = 0.0;
size_t n_ = 0;
};
void EdgeDiffMap(const Image3F& img1, const Image3F& mu1, const Image3F& img2,
const Image3F& mu2, Image3F* out, double* plane_avg) {
for (size_t c = 0; c < 3; ++c) {
StreamingAverage avg;
for (size_t y = 0; y < img1.ysize(); ++y) {
const float* JXL_RESTRICT row1 = img1.PlaneRow(c, y);
const float* JXL_RESTRICT row2 = img2.PlaneRow(c, y);
const float* JXL_RESTRICT rowm1 = mu1.PlaneRow(c, y);
const float* JXL_RESTRICT rowm2 = mu2.PlaneRow(c, y);
float* JXL_RESTRICT row_out = out->PlaneRow(c, y);
for (size_t x = 0; x < img1.xsize(); ++x) {
float edgediff = std::max(
std::abs(row2[x] - rowm2[x]) - std::abs(row1[x] - rowm1[x]), 0.0f);
row_out[x] = 1.0f - edgediff;
avg.Add(row_out[x]);
}
}
plane_avg[c] = avg.Get();
}
}
// Temporary storage for Gaussian blur, reused for multiple images.
class Blur {
public:
Blur(const size_t xsize, const size_t ysize)
: rg_(jxl::CreateRecursiveGaussian(1.5)), temp_(xsize, ysize) {}
void operator()(const ImageF& in, ImageF* JXL_RESTRICT out) {
jxl::ThreadPool* null_pool = nullptr;
FastGaussian(rg_, in, null_pool, &temp_, out);
}
Image3F operator()(const Image3F& in) {
Image3F out(in.xsize(), in.ysize());
operator()(in.Plane(0), &out.Plane(0));
operator()(in.Plane(1), &out.Plane(1));
operator()(in.Plane(2), &out.Plane(2));
return out;
}
// Allows reusing across scales.
void ShrinkTo(const size_t xsize, const size_t ysize) {
temp_.ShrinkTo(xsize, ysize);
}
private:
hwy::AlignedUniquePtr<jxl::RecursiveGaussian> rg_;
ImageF temp_;
};
void SSIMMap(const Image3F& m1, const Image3F& m2, const Image3F& s11,
const Image3F& s22, const Image3F& s12, Image3F* out,
double* plane_averages) {
for (size_t c = 0; c < 3; ++c) {
StreamingAverage avg;
for (size_t y = 0; y < out->ysize(); ++y) {
const float* JXL_RESTRICT row_m1 = m1.PlaneRow(c, y);
const float* JXL_RESTRICT row_m2 = m2.PlaneRow(c, y);
const float* JXL_RESTRICT row_s11 = s11.PlaneRow(c, y);
const float* JXL_RESTRICT row_s22 = s22.PlaneRow(c, y);
const float* JXL_RESTRICT row_s12 = s12.PlaneRow(c, y);
float* JXL_RESTRICT row_out = out->PlaneRow(c, y);
for (size_t x = 0; x < out->xsize(); ++x) {
float mu1 = row_m1[x];
float mu2 = row_m2[x];
float mu11 = mu1 * mu1;
float mu22 = mu2 * mu2;
float mu12 = mu1 * mu2;
float nom_m = 2 * mu12 + kC1;
float nom_s = 2 * (row_s12[x] - mu12) + kC2;
float denom_m = mu11 + mu22 + kC1;
float denom_s = (row_s11[x] - mu11) + (row_s22[x] - mu22) + kC2;
row_out[x] = (nom_m * nom_s) / (denom_m * denom_s);
avg.Add(row_out[x]);
}
}
plane_averages[c] = avg.Get();
}
}
} // namespace
double Ssimulacra::Score() const {
double ssim = 0.0;
double ssim_max = 0.0;
for (size_t c = 0; c < 3; ++c) {
for (size_t scale = 0; scale < scales.size(); ++scale) {
ssim += kScaleWeights[scale][c] * scales[scale].avg_ssim[c];
ssim_max += kScaleWeights[scale][c];
ssim += kMinScaleWeights[scale][c] * scales[scale].min_ssim[c];
ssim_max += kMinScaleWeights[scale][c];
}
ssim += kEdgeWeight[c] * avg_edgediff[c];
ssim_max += kEdgeWeight[c];
ssim += kGridWeight[c] *
(row_p2[0][c] + row_p2[1][c] + col_p2[0][c] + col_p2[1][c]);
ssim_max += 4.0 * kGridWeight[c];
}
double dssim = ssim_max / ssim - 1.0;
return std::min(1.0, std::max(0.0, dssim));
}
inline void PrintItem(const char* name, int scale, const double* vals,
const double* w) {
printf("scale %d %s = [%.10f %.10f %.10f] w = [%.5f %.5f %.5f]\n", scale,
name, vals[0], vals[1], vals[2], w[0], w[1], w[2]);
}
void Ssimulacra::PrintDetails() const {
for (size_t s = 0; s < scales.size(); ++s) {
PrintItem("avg ssim", s, scales[s].avg_ssim, &kScaleWeights[s][0]);
PrintItem("min ssim", s, scales[s].min_ssim, &kMinScaleWeights[s][0]);
if (s == 0) {
PrintItem("avg edif", s, avg_edgediff, kEdgeWeight);
PrintItem("rp2 ssim", s, &row_p2[0][0], kGridWeight);
PrintItem("cp2 ssim", s, &col_p2[0][0], kGridWeight);
PrintItem("rp2 edif", s, &row_p2[1][0], kGridWeight);
PrintItem("cp2 edif", s, &col_p2[1][0], kGridWeight);
}
}
}
Ssimulacra ComputeDiff(const Image3F& orig, const Image3F& distorted) {
Ssimulacra ssimulacra;
Image3F img1 = Rgb2Lab(orig);
Image3F img2 = Rgb2Lab(distorted);
Image3F mul(orig.xsize(), orig.ysize());
Blur blur(img1.xsize(), img1.ysize());
for (int scale = 0; scale < kNumScales; scale++) {
if (img1.xsize() < 8 || img1.ysize() < 8) {
break;
}
if (scale) {
img1 = Downsample(img1, 2, 2);
img2 = Downsample(img2, 2, 2);
}
mul.ShrinkTo(img1.xsize(), img2.ysize());
blur.ShrinkTo(img1.xsize(), img2.ysize());
Multiply(img1, img1, &mul);
Image3F sigma1_sq = blur(mul);
Multiply(img2, img2, &mul);
Image3F sigma2_sq = blur(mul);
Multiply(img1, img2, &mul);
Image3F sigma12 = blur(mul);
Image3F mu1 = blur(img1);
Image3F mu2 = blur(img2);
// Reuse mul as "ssim_map".
SsimulacraScale sscale;
SSIMMap(mu1, mu2, sigma1_sq, sigma2_sq, sigma12, &mul, sscale.avg_ssim);
const Image3F ssim_map = Downsample(mul, 4, 4);
for (size_t c = 0; c < 3; c++) {
float minval, maxval;
ImageMinMax(ssim_map.Plane(c), &minval, &maxval);
sscale.min_ssim[c] = static_cast<double>(minval);
}
ssimulacra.scales.push_back(sscale);
if (scale == 0) {
Image3F* edgediff = &sigma1_sq; // reuse
EdgeDiffMap(img1, mu1, img2, mu2, edgediff, ssimulacra.avg_edgediff);
for (size_t c = 0; c < 3; c++) {
RowColAvgP2(ssim_map.Plane(c), &ssimulacra.row_p2[0][c],
&ssimulacra.col_p2[0][c]);
RowColAvgP2(edgediff->Plane(c), &ssimulacra.row_p2[1][c],
&ssimulacra.col_p2[1][c]);
}
}
}
return ssimulacra;
}
} // namespace ssimulacra