< redhat

TLS Test Framework

Hubert Kario
Senior Quality Engineer
05-02-2017

SSL is dead! Long live SSE TLS!

What is TLS?

* Transport Layer Security

* Protocol used to provide security for HTTPS
* Over 50% of Internet web traffic is using TLS
* E-mail, Tor, loT, SRTP, VPN ...

e

Q redhat

Why use TLS?

* Confidentiality
* Integrity
* Authenticity

History of TLS

* SSL version 1 - Netscape -1990’s (internal)
 SSL version 2 - Netscape - 1995

 SSL version 3 - Netscape - 1996

* TLS version 1.0 - IETF -1999

* TLS version 1.1 - IETF - 2006

* TLS version1.2 - IETF - 2008

e TLS version 1.3 (draft 18) - IETF - 2016

’ redhat

Updates to TLS

* Nearly 70 RFCs
* Around 6 widely deployed drafts
* 27 TLS extensions

* Fixes for protocol and implementation bugs:
* Secure renegotiation
e fallback_scsv
* Client Hello padding
* Extended master secret (Triple handshake)

’ redhat

Complexity of TLS

* 326 ciphersuites (official)
* 15 key sizes and types (common)
* 4 PKI cryptosystems

* 37 Diffie-Hellman group sizes (common and
defined)

* 16 signature-hash algorithm pairs

* 4 extensions directly interacting with derivation
and use of cryptographic keys

* 4 modes of connection establishment
* Client certificates

Q redhat

Testing with TLS libraries

Existing network protocol fuzzers

tlsfuzzer

tlsfuzzer

Python 2.6 or 3.2 and up

No native dependencies (pure Python)

Extensive test suite over 60 test scripts/features
Over 18000 individual test cases

Relatively fast: ~300 tc/s/core on 2.6Ghz Skylake i7
Focus on new crypto and TLS features

Unit tested: 95+% statement coverage

Over 20 issues found across NSS, GnuTLS and
OpenSSL

Q redhat

Why use tisfuzzer?

Configuration specifics
Integration testing

Black box testing

Forward compatibility
Obscure client compatibility

’ redhat

Simple compatibility test

conversation = Connect(host, port)

node = conversation

ciphers = [CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV,
CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,

LS
CipherSuite.TLS_RSA_WITH_RC4_128_MD5]
ext = {}
ext[ExtensionType.server_name] = SNIExtension().create(b“example.io”)
ext[ExtensionType.supported_groups] = SupportedGroupsExtension().\
Create([23, 24, 25])
ext[ExtensionType.signature_algorithms] = \
SignatureAlgorithmsExtension().create([
(HashAlgorithm.sha384, SignatureAlgorithm.rsa),
(HashAlgorithm.sha256, SignatureAlgorithm.rsa),
(HashAlgorithm.shal, SignatureAlgorithm.rsa),
(HashAlgorithm.sha256, SignatureAlgorithm.ecdsa),
(HashAlgorithm.shal, SignatureAlgorithm.ecdsa)])
node.add_child(ClientHelloGenerator(ciphers, ext, (3,3)))
node.add_child(ExpectServerHello())

ﬂ

node
node

1

Complete connection example

conversation = Connect(host, port)
node = conversation
ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,
CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV]
node node.add_child(ClientHelloGenerator(ciphers))
node = node.add_child(ExpectServerHello())
node = node.add_child(ExpectCertificate())
node = node.add_child(ExpectServerHelloDone())
node = node.add_child(ClientKeyExchangeGenerator())
node = node.add_child(ChangeCipherSpecGenerator())
node = node.add_child(FinishedGenerator())
node = node.add_child(ExpectChangeCipherSpec())
node = node.add_child(ExpectFinished())
node = node.add_child(ApplicationDataGenerator(..))
node = node.add_child(ExpectApplicationData())
node = node.add_child(AlertGenerator(AlertLevel.warning,
AlertDescription.close_notify))
node.add_child(ExpectAlert(AlertLevel.warning,
AlertDescription.close_notify))
node.next_sibling = ExpectClose()
node.add_child(ExpectClose())

node

CCS injection attack

conversation = Connect(host, port)
node = conversation
ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,
CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV]
node = node.add_child(ClientHelloGenerator(ciphers))
node = node.add_child(ExpectServerHello())
node = node.add_child(ExpectCertificate())
node = node.add_child(ExpectServerHelloDone())
node = node.add_child(ClientKeyExchangeGenerator())
node = node.add_child(ChangeCipherSpecGenerator())
node = node.add_child(FinishedGenerator())
node = node.add_child(ExpectChangeCipherSpec())
node = node.add_child(ExpectFinished())
node = node.add_child(ApplicationDataGenerator(..))
node = node.add_child(ExpectApplicationData())
node = node.add_child(AlertGenerator(AlertLevel.warning,
AlertDescription.close_notify))
node.add_child(ExpectAlert(AlertLevel.warning,
AlertDescription.close_notify))
node.next_sibling = ExpectClose()
node.add_child(ExpectClose())

node

CCS injection attack

conversation = Connect(host, port)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,
CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV]

node = node.add_child(ClientHelloGenerator(ciphers))

node = node.add_child(ExpectServerHello())

node = node.add_child(ExpectCertificate())

node = node.add_child(ExpectServerHelloDone())

node = node.add_child(ChangeCipherSpecGenerator())

node = node.add_child(ExpectAlert(AlertLevel.fatal,

AlertDescription.unexpected_message))

node.add_child(ExpectClose())

Malformed message

conversation = Connect(host, port)
node = conversation
ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,
CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV]
ext = {ExtensionType.server_name
SNIExtension().create(b“example.io”)}
hello = ClientHelloGenerator(ciphers, ext)
node = node.add_child(truncate_handshake(hello, 4))
node = node.add_child(ExpectAlert(AlertLevel.fatal,
AlertDescription.decode_error))
node.add_child(ExpectClose())

Script automation

{"server_command": ["{command}", "s_server",
"-key", "tests/serverX509Key.pem",

"-cert", "tests/serverX509Cert.pem",
n 'M“ ,
"-accept", "4433"],
tests! &]
{"name" : "test-aes-gcm-nonces.py" },
{"name" : "test-atypical-padding.py" }

Script automation

$ python tests/scripts_retention.py openssl-1.0.2.json which openssl’
INFO:__main__:Server process started
server:stdout:Using default temp DH parameters
server:stdout:ACCEPT
INFO:__main__:test-aes-gcm-nonces.py:started
INFO:__main__:test-aes-gcm-nonces.py:finished
INFO:__main__:test-atypical-padding.py:started
INFO:__main__:test-atypical-padding.py:finished
DEBUG:root:Killing server process
DEBUG:root:Server process killed: -15

Ran 5 test cases

expected pass: 5

expected fail: ©

Ran 2 scripts
good: 2
bad: 0

TLS Features

SSLv2, SSLv3, TLSv1.0, TLSv1.1 and TLSv1.2

AES-CBC, AES-GCM, 3DES, RC4, Chacha20 and NULL
ciphers

MD5, SHA1, SHA256 and SHA384 HMAC

RSA, SRP, SRP_RSA, DHE, DH_anon, ECDHE and ECDH_anon
key exchange

Encrypt-then-MAC
TACK certificate pinning
Client certificates
Secure renegotiation
TLS_FALLBACK_SCSV
Extended master secret

’ redhat

TLS Features

* Next Protocol Negotiation
* Application Layer Protocol Negotiation

* FFDHE group negotiation (RFC 7919)
e Server name indication

—_ﬂ

Missing TLS features

* TLSv1.3 (draft) - in progress!
* RSA-PSS

* X25519

* PSK key exchange

* AES-CCM

Camellia (CBC and GCM)
ECDSA, DSA certificates

* Raw keys, GPG keys
Hearbeat protocol

* Kerberos

’ redhat

Contributing

https://github.com/tomato42/tIsfuzzer
https://github.com/tomato42/tlslite-ng

GPLvZ2 for tisfuzzer
LGPLvZ2 for tislite-ng

Tags =pleup for grabs

https://github.com/tomato42/tlsfuzzer
https://github.com/tomato42/tlslite-ng
https://github.com/tomato42/tlsfuzzer
https://github.com/tomato42/tlslite-ng

Questions?

hkario@redhat.com

- redhat

« rednat

TLS Test Framework

Hubert Kario
Senior Quality Engineer
05-02-2017

SSL is dead! Long live SSETLS!

SSL is the name of the first two versions of what has later become the TLS protocol.
Both of those versions - 55Lv2 and S5Lv3 - are now known to be insecure and they are
officially deprecated. So for the rest of the presentation | will be using the acronym TLS.

to provide security for HTTPS
Internet web traffic is using TLS

, loT, SRTF, VPN ...

Why use TLS?

* Confidentiality
* Integrity
* Authenticity

Confidentiality is the property of the protocol that makes the contents of communication
secret

Integrity establishes that no messages were modified in the transmission and that all come
from the same server or client

Authenticity establishes the identity of the server you are communicating with

History of TLS

* SSL version 1 - Netscape - 1990’s (internal)
* SSL version 2 - Netscape - 1995

* SSL version 3 - Netscape - 1996

* TLS version 1.0 - IETF -1999

* TLS version 1.1 - IETF - 2006

* TLS version1.2 - IETF - 2008

* TLS version 1.3 (draft 18) - IETF - 2016

IETF = Internet Engineering Task Force

In other words, the basics of the protocol were established 20 years ago now.

Complexity of TLS

» 326 ciphersuites (official)
» 15 key sizes and types (common)
* 4 PKIl cryptosystems

» 37 Diffie-Hellman group sizes (common and
defined)

» 16 signature-hash algorithm pairs

» 4 extensions directly interacting with derivation
and use of cryptographic keys

* 4 modes of connection establishment
* Client certificates

ﬂ

Most of those things interacts with each-other, the order of items advertised by peers does
matter.

And not only they need to be correct, in that client or server computes valid ciphertext and
signatures, it needs to be tested that it also verifies the validity of the signatures or
correctness of encryption padding.

Testing with TLS libraries

ﬂ

The libraries we have are primarily written to produce correct output. That means it
is hard to make them send invalid data. That makes it in turn hard to create
negative tests. So you either need to have a parallel implementation of TLS just for
testing or to hack the main library and add ways that make it misbehave. Both
rather unattractive.

Moreover, they deprecate features like insecure protocols or algorithms, it's
generally not possible to make them advertise features they don’t support.

Existing network protocol fuzzers

B

As |'ve said, TLS is a complex protocol, if only because of all the accretion that happened
over the years.

I've looked at existing network protocol fuzzers. While there few good protocol
fuzzers, they focus more on protocols which don't have state (like HTTP) or have
very limited state (like SMTP). This makes it hard to write fuzzers for TLS where a
proper implementation needs to reference messages sent before and keep
extensive state to be able to correctly encrypt and decrypt messages (including
state between different connections — as that's needed for session resumption).

tlsfuzzer

That's why we have started on a new dedicated TLS protocol test framework called tlsfuzzer.

tlsfuzzer

* Python 2.6 or 3.2 and up

* No native dependencies (pure Python)

* Extensive test suite over 60 test scripts/features

* Over 18000 individual test cases

» Relatively fast: ~300 tc/s/core on 2.6Ghz Skylake i7
* Focus on new crypto and TLS features

» Unit tested: 95+% statement coverage

* Over 20 issues found across NS5, GnuTLS and
OpenSSL

e —)

We have found in total over 20 issues in NSS, GnuTLS and OpenSSL and one security issue
in NSS.

While | am talking about a fuzzer, it is a TLS protocol fuzzer, so it is focusing on TLS
messages and fields contents, not doing random changes to the network packets sent.

Why use tisfuzzer?

* Configuration specifics

* Integration testing

* Black box testing

* Forward compatibility

* Obscure client compatibility

B

While usefulness of a protocol fuzzer is quite obvious to people writing TLS
implementations, it is also useful for anyone using TLS libraries.

Mot every single combination of configuration parameters is tested (or even can be tested)
by the implementation programmers.

Some features need callbacks which are written by programmers of the application using
the TLS implementation.

With appliances usually very little is known about the TLS implementation they are using,
especially if it is not a dedicated TLS terminator but rather a UPS, firewall, spam filter, etc.
and TLS is mainly used for administrative interface.

In general, this allows to test how any given implementation will be able to handle possible
future version of protocol - as while the exact changes are unknown, the possible changes
they can introduce are known - the initial Client Hello message sent will need to remain
backwards compatible to currently deployed version of TLS, be it 1.2 or the upcoming 1.3.

Simple compatibility test

conversation = Connect({host, port}

node = conversation

ciphers = [CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSWV,
CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA3E4,

CipherSuite.TLS_RSA WITH_RC4 128 MDS]
ext = [}
ext[ExtensionType.server_name] = SNIExtension().create({b“example.io™)
ext[ExtensionType.supported_groups] = SupportedGroupsExtension().\
Create{[23, 24, 25])
ext[ExtensionType.signature_algorithms] = %
SignaturealgorithmsExtension().create([
[HashAalgorithm.sha3B4, Signaturedlgorithm.rsa),
{HashAlgorithm,sha256, Signatureaslgorithm.rsa),
(Hashalgorithm,.shal, SignatureAlgoriths,rsa),
(Hashalgorithm,.sha266, Signaturealgorithm.ecdsa),
(Hashalgorithm.shal, Sigmaturealgorithm.ecdsa)])
node . add_child{ClientHelloGenerator ({ciphers, ext, (3,3)))
node , add_child{ExpectServerHellof))

node
node

We can create client hello messages exactly like would a given client create, impersonating
it and checking if the server will interoperate with it.

Complete connection example

conversation = Connect({host, port}

node = conversation

ciphers = [CipherSuite.TLS_RS5A_WITH_AES_12B_CBC_SHA,
CipherSuite,TLS_EMPTY_RENEGOTIATION_INFO_SCSW]

node = node.add_child{ClientHelloGenerator (ciphers))
node = node.add child{ExpectServerHella(}}

node = node.add_child{ExpectCertificate())

node = node.add_child{ExpectServerHellobone()]

node = node,add_child({ClientKeyExchangeGeneratar(])
node = node.add_child{ChangeCipherSpecGenerator{}))
node = node.add_child{FinishedGenerator{)}

node = node.add child{ExpectChangeCipherspec(])

node = node.add_child{ExpectFinished(})

node = node,add_child{ApplicationDataGenerator{ ..)}
node = node.add_child{ExpectapplicationDatal}))

node = node,add_child{alertGenerator{Alertlevel .warning,

AlertDescription.close_notify))
node = node.add_child{Expectalert(AlertLevel . warning,
Alertbescription.close_notify))
node . next_sibling = ExpectClose()
node . add_child{ExpectClose())

We can also perform a full connection, to verify if the server implements the algorithms
correctly.

CCS injection attack

conversation = Connect({host, port}

node = conversation

ciphers = [CipherSuite.TLS_RS5A_WITH_AES_12B_CBC_SHA,
CipherSuite,TLS_EMPTY_RENEGOTIATION_INFO_SCSW]

node = node.add_child{ClientHelloGenerator (ciphers))
node = node.add child{ExpectServerHella(}}

node = node.add_child{ExpectCertificate())

node = node.add_child{ExpectServerHellobone()]

node = node,add_child{ClientkeyExchangaGenerator())
node = node.add_child{ChangeCipherSpecGenerator{})
node = node.add_child{FinishedGenerator({))

node = node.add child{ExpectChangeCipherspec(])

node = node.add_child{ExpectFinished(}]

node = node,add_child{ApplicationDataGenerator{ ..)}
node = node,add_child{ExpectaApplicationDataf})

node = node.add_child{alertGenerator(Alertlevel warning,

AlertDescription.close_notify))
node = node.add_child{Expectalert{AlertLevel . warning,
AlertDescription.close_notify))
node . next_sibling = ExpectClose()
node . add_child{ExpectClose(])

We can replicate attacks, like the Change Cipher Spec bug in OpenSSL where that message
was accepted too early, making the encryption keys predictable. To create it, we need to
remaove most of the messages and place the CCS earlier.

CCS injection attack

conversation = Connect(host, port)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,
CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV]

node, add_child{ClientHelloGenerator (ciphers))

node , add_child{ExpectServerHella{)}

node, add_child{ExpectCortificate())

node . add_child{ExpectSerwverHellobDone())

node , add_child{ChangeCipherSpecGenerator())

node, add_child{Expectalert(alertLevel, fatal,

alertRescription, unexpected message))

.add_child{ExpectClose()

That change should make the server reply with unexpected_message alert message.

Malformed message

conversation = Connect(host, port)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA,

CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCEV]

ext = {ExtensionType.server_name :
SNIExtension().create{bexample.io”)}

hello = ClientHelloConorator{ciphers, oxt)

node = node.add_child{truncate_handshake(hello, 4))

node = node.add_child{Expectalert(AlertLevel . fatal,

alertDescription,decode_error))

node , add_child{ExpectClose())

It's also possible to create malformed messages, like in this case, a client hello that lacks the
last 4 bytes of the message.

Script automation

{"server_command”™: ["{command}", "s_server"™,
"-key", "tests/serverxsS@9Key.pem”,
"-part"™, "tests/serverxXSefCert.pem",
--M"r
“-accept", "4433"],

"tests" @ [
{"name" : "test-aes-gcm-nonces.py” },
{"name" : "test-atypical-padding.py" }
]
1

I've also recently added support for automating of running of the scripts against a server.
The server is automatically started and stopped by the server, and then multiple scripts are
run against it. Both the server and scripts can receive optional parameters, or may be
expected to fail (in case a test case is failing because of a missing feature in the SUT).

Script automation

% python tests/scripts_retention.py openssl-1.8.2.json ‘which openssl’
INFD:__main__ :Server process started
server:stdout:Using default temp DH parameters
server:stdout : ACCEPT
INFO:__main__:test-aes-gom-nonces, py:started
INFQ: main__ :test-aes-gem-nonces.py:finished
INFO: _main__:test atypical padding.py:started
INFO:__main__ :test-atypical-padding.py:finished
DEBUG: root :Killing server process
DEBUG: root :Server process killed: -15

Ran & test cases

expected pass: 5

expected fail: @

Ran 2 scripts
good: 2
bad: @

Running the previous script will give us such summary.

TLS Features

* 55Lv2, S5Lv3, TLSv1.0, TLSv1.1 and TLSv1.2

AES-CBC, AES-GCM, 3DES, RC4, Chacha20 and NULL
ciphers

MDS5, SHAT, SHA256 and SHA384 HMAC

RSA, SRP, SRP_RSA, DHE, DH_anon, ECDHE and ECDH_anon
key exchange

* Encrypt-then-MAC
TACK certificate pinning
* Client certificates

* Secure renegotiation

* TLS_FALLBACK_SCSV

* Extended master secret

legotiation
Layer Protocol Negotiation
p negotiation (RFC 7919)
me indication

ft) - in progress!

b.com/tomato42/tlsfuzzer
ithub.com/tomato42/tlslite-ng

r tisfuzzer
for tislite-ng

ew requestilldup for grabs

Questions?

hkario@redhat.com

