

Testing TLS

Hubert Kario
Quality Engineer
24-10-2015

2014

“Few” things happened last year. In short: every big cryptographic library had some
critical flaws.

3/5624-10-2015

Heartbleed

we had a bugs in handling of obscure TLS feature that exposed private keys

4/5624-10-2015

OpenSSL CCS bug

we had a bug in handling state machine transitions which caused the encryption to use predictible
keys

5/5624-10-2015

gotofail

we had regular typos that caused lack of verification of signatures

6/5624-10-2015

Certificate handling

we also had NSS accepting invalid signatures in certificates and GnuTLS accepting
non CA certs as CA certs

7/5624-10-2015

CVE-2014-6321 in schannel
a.k.a. Winshock

we had a remote code execution in Windows caused by incorrect message parsing

8/5624-10-2015

POODLE

And the year ended with the final nail to SSLv3 coffin.

2015

Next yesr wasn't much better, but we discovered problems with protocol and
misconfigurated servers rather than implementations.

10/5624-10-2015

FREAK

Export grade keys got factored

11/5624-10-2015

LOGJAM

And small Diffie Hellman parameters were broken.

State of testing

So, how did this happen? After all, those are all security critical libraries, they are
tested, aren't they?!

Well, “tested”, yes, tested well, not necessairly.

13/5624-10-2015

No testing
<20%

OSS projects w/test plans

Source: Farooq & Quadri, 2011

No plan

Open Source projects in general don't use test plans.

Farooq & Quadri, 2011. “Empirical evaluation of software testing techniques in an
open source fashion”

14/5624-10-2015

No testing40%

OSS projects w/test tools

Source: Farooq & Quadri, 2011

No tooling

About 40% use any kind of standard tooling for conducting tests.

Farooq & Quadri, 2011.

15/5624-10-2015

No testing
<50%

Code coverage tools

Source: Farooq & Quadri, 2011

No coverage

Less than 50% use code coverage measurement

Farooq & Quadri, 2011.

16/5624-10-2015

Bad error handling

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

92%
Missing

Incorrect
8%

It's important because a lot of critical bugs are caused by bad error handing.

 Yan, Luo, Zhuang, Rodrigues, et al, 2014. “Simple Testing Can Prevent Most
Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive
Systems”

17/5624-10-2015

No testing

77%

Unit tests vs bugs

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

Reproducible
in unit testing

At the same time most of those are reproducible inside unit test cases, those that
are not is usually because the project didn't have unit testing

Yan, Luo, Zhuang, Rodrigues, et al, 2014. .

18/5624-10-2015

OpenSSL NSS GnuTLS

Framework

N° tests 100-200 >7000 100-200

Negative tests

OSS TLS libraries

How do OSS TLS libraries compare? Not well. OpenSSL doesn't follow good testing
practice and has minimal test coverage. GnuTLS only adds use of standard test
framework to that. NSS may look good here, but not if we compare it to other pieces
of code.

19/5624-10-2015

0

20

40

60

80

100

120

Te
st

s/
L
O

C

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

So let's compare the test coverage to other systems. The scale on the left is the
ratio of number of test cases to lines of code. Sqlite has 97k LOC and 10M test
cases so has ratio of 103.

Hmm, doesn't look like our libraries register on the scale... let's zoom a bit

20/5624-10-2015

0

2

4

6

8

10

12

Te
st

s/
L
O

C

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

Still hard to see... let's zoom by a factor of ten again.

21/5624-10-2015

0

0.2

0.4

0.6

0.8

1

1.2

Te
st

s/
L
O

C

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

Ahh, there we go!

What I'd call decent test coverage is one test case for every 3 to 8 lines of code, the
minimum that is necessary to get to 100% branch coverage in testing.

(NSS has about 670kLOC and 7k test cases so about 0.01 test cases per line of
code.

OpenSSL and GnuTLS both have about 500kLOC so they don't register on the
scale still, we would have to zoom 3 times more for them to be visible.)

Why is that?

So why is that security libraries don't perform more testing?

Why the testing they undergone till now (including by other researchers) have had
limited effect?

23/5624-10-2015

Libraries and bad data

The libraries we have are primarily written to produce correct output. That means it
is hard to make them send invalid data. That makes it in turn hard to create
negative tests. So you either need to have a parallel implementation of TLS just for
testing or to hack the main library and add ways that make it misbehave. Both
rather unattracitve.

24/5624-10-2015

Invisible bugs

Implementation can leak good deal of information through timing or how exactly it
handles given failures. Not checking if a value sent by the other side is correct if all
the other implementations send only good data can remain undetected for a long
time. Which leads us to...

25/5624-10-2015

Fuzzy testing

...fuzzy testing. Problem with TLS is that is has much more complex grammar
compared to typical ASCII based protocols like SMTP or HTTP. Additionally, typical
network fuzzers focus on creating inputs that crash the server, not ones that will
allow you to extract private keys from the server.

Finally, to test TLS you need to implement full TLS and its cryptography – in some
situations you could say that TLS is used as a transport layer for TLS.

26/5624-10-2015

Compatibility fears

From the other side, we have administrators which are afraid of changes as they
may break older clients.

27/5624-10-2015

Fears of untested code

And in general, there's fear of deploying code with limited tests because of possible
bugs lurking in it.

So to answer the “Why?” question: combination of understaffed projects, hard
problem and resistence to change.

Fixing the problem

How can we fix this problem?

29/5624-10-2015

Duplication of effort

Of course, I didn't want to take every library in turn and extend its test suite.

All of the libraries implement the same protocol so it should be possible to use one
tool to test all of them. Even if not all features are implemented by all of them the
protocol provides mechanisms for autodetection of features.

30/5624-10-2015

Full TLS handshake

ClientHello -------->

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

<-------- ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

The problem with TLS is that's it's a complex protocol.

Some of those messages can eaisly have 20-30 fields and values that need to be set for
negotiation to sucseed, then we have values which are encrypted – we need to be able to
modify the values before encryption.

Some of those messages are mandatory, others are optional.

When we know that the server actually accepted our connection? When we can decrypt
the Finished message sent by server (that's the second line from bottom). In some cases we
may actually be required to do a renegotiation (which is another just as long list) to
reproduce an issue.

31/5624-10-2015

Existing fuzzers

That makes it hard to use with existing frameworks.

I've looked at existing network protocol fuzzers. While there few good protocol
fuzzers, they focus more on protocols which don't have state (like HTTP) or have
very limited state (like SMTP). This makes it hard to write fuzzers for TLS where a
proper implementation needs to reference messages sent before and keep
extensive state to be able to correctly encrypt and decrypt messages (including
state between different connections – as that's needed for session resumption).

(Sulley and scapy.)

32/5624-10-2015

TLS testing (and fuzzing)

So I decided that since I'll be mostly focusing on correctness of implementation and
not on crashing the servers, starting work on a new test framework dedicated for
testing TLS will be most effective. That being said, to make it as portable, easy to
work with and extend as possible, I've decided to use pure Python implementation
for both the framework as well as the underlying cryptography.

33/5624-10-2015

Timing information

And last but not least, we need to be able to collect timing information for the
handshakes and data to detect silent errors.

Tlsfuzzer
(and tlslite-ng)

As such, I've started working on a tool that would enable testing, verification and in
the end - fuzzing of any part of the TLS protocol.

35/5624-10-2015

Use cases

 1. Manual run (setup)

 2. Automated run

The manual run tells the user how to configure the server under test, detects the features
supported by the server and then tests those features. If some features are mutually
exclusive (like testing behaviour with and without client certificates), then it will ask the
user to reconfigure the server in different way – in general, keeping track which features
were already tested and which were not.

This also provides basic configuration for the fully automated run that later can be used
inside system test suite so that it is run in continous integration system.

36/5624-10-2015

Architecture

tlslite-ng

OpenSSL

NSS

GnuTLS

etc.

generator

fuzzer

executor

The process starts with the generator which takes connection templates and the
knowledge about peer (what features it supports) and creates a set of message
types and expected responses – a conversation. That is then modified by the fuzzer
that knows which parts can be modified at will while modification of which will cause
connection abort. Such modified message generators are passed to executor which
connects to other framework using tlslite-ng implementation to create, write and
encrypt the messsages. If the connection aborts, the modified conversation can be
saved for reproducing and fuzzer continues work.

37/5624-10-2015

Generator architecture

scannertemplates

conversation

generator

The generator probes the server to see which features it supports, takes the
conversation templates that are applicable to it outputs conversations with expected
responses applicable to a given server.

38/5624-10-2015

Fuzzing

The important part here, is that while I'm talking about fuzzing it's not the typical
fuzzing. Because the fuzzer is a TLS protocol fuzzer, the elements being fuzzed
aren't single bytes, but rather whole messages or fields. The fuzzer knows when it
inserts new messages, drops existing messages, fileds, etc.

39/5624-10-2015

Fuzzer architecture

conversation

fuzz

conversation

verify

Fuzzer takes the conversation from the generator, modifies it randomly, taking into
account that some changes will cause the expected responses to change too. So
before it runs the conversation, it checks if it is self-consistent (that if the connection
is supposed to be aborted, there's a check for that, and if it should sucseed, there's
check for that too).

40/5624-10-2015

Runner architecture

conversation

expect

generate

command

The runner then just takes decision nodes of the conversation and either expects a
server response, generates a message or executes a generic command.

41/5624-10-2015

Architecture

tlslite-ng

OpenSSL

NSS

GnuTLS

etc.

generator

fuzzer

executor

At least, that's the plan. For now only the executor is working and I'm collecting
interesting test cases to have better picture before starting to work on fuzzer.

So what can we do with just the executor, turns out quite a bit.

42/5624-10-2015

Correct run

$ openssl s_server -key /tmp/localhost.key -cert /tmp/localhost.crt
-www >/dev/null 2>&1

$ PYTHONPATH=. python scripts/test-interleaved-application-data-and-
fragmented-handshakes-in-renegotiation.py

Application data inside Finished...

OK

Application data inside Client Key Exchange...

OK

Application data inside Client Hello...

OK

Test end

successful: 3

failed: 0

This is example of a run, showing a passing test.

Now, if we run one of the test cases I prepared against a correct implementation, we'll see
just listing of specific test cases that passed and a summary

43/5624-10-2015

Failing run

$ openssl s_server -key /tmp/localhost.key -cert /tmp/localhost.crt
-www >/dev/null 2>&1

$ PYTHONPATH=. python scripts/test-interleaved-application-data-and-
fragmented-handshakes-in-renegotiation.py

(...snip...)

Application data inside Client Hello...

Error encountered while processing node
<tlsfuzzer.expect.ExpectServerHello object at 0x7f0ac61d3310> with
last message being: <tlslite.messages.Message object at
0x7f0ac5f36a50>

(...snip...)

AssertionError: Unexpected message from peer: Alert(fatal,
unexpected_message)

Test end

successful: 1

failed: 2

If we run the same test case against a non-conformant server we will see the name of the
test case that failed

44/5624-10-2015

Example test case

conversation = Connect("localhost", 4433)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA]

node = node.add_child(ClientHelloGenerator(ciphers))

node = node.add_child(ExpectServerHello())

node = node.add_child(ExpectCertificate())

node = node.add_child(ExpectServerHelloDone())

node = node.add_child(ClientKeyExchangeGenerator())

node = node.add_child(ChangeCipherSpecGenerator())

node = node.add_child(FinishedGenerator())

node = node.add_child(ExpectChangeCipherSpec())

node = node.add_child(ExpectFinished())

node = node.add_child(ApplicationDataGenerator(

 bytearray(b"hello server!\n")))

node = node.add_child(AlertGenerator(
 AlertLevel.warning,
 AlertDescription.close_notify))

node = node.add_child(ExpectAlert())

node.next_sibling = ExpectClose()

Under the hood it looks like this

But it's mostly just verbiage to create a decision tree

45/5624-10-2015

Example test case

conversation = Connect("localhost", 4433)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA]

node = node.add_child(ClientHelloGenerator(ciphers))

node = node.add_child(ExpectServerHello())

node = node.add_child(ExpectCertificate())

node = node.add_child(ExpectServerHelloDone())

node = node.add_child(ClientKeyExchangeGenerator())

node = node.add_child(ChangeCipherSpecGenerator())

node = node.add_child(FinishedGenerator())

node = node.add_child(ExpectChangeCipherSpec())

node = node.add_child(ExpectFinished())

node = node.add_child(ApplicationDataGenerator(

 bytearray(b"hello server!\n")))

node = node.add_child(AlertGenerator(
 AlertLevel.warning,
 AlertDescription.close_notify))

node = node.add_child(ExpectAlert())

node.next_sibling = ExpectClose()

Under the hood it looks like this

The important stuff is in green here. Those are the tree nodes that are linked together,
children are the “what to do if processing is successful” while siblings (see very bottom) are
the “what alternatives do I have if the expectations are not met”.

The nodes in the tree all have sensible defaults (that is, behave according to the RFC and
previously exchanged messages), with the exception of Connect node, which need to have
host name and port provided.

46/5624-10-2015

Decision tree
Connect

ClientHelloGenerator

ExpectServerHello

AlertGenerator

ExpectAlert ExpectClose

That code creates a tree like this.

Generator then takes every node in turn and either tries to read a message from the record
layer or write a message. If the read message doesn't match the expected one, or the
server closes a connection, we get a connection abort.

47/5624-10-2015

Invalid extension test case

conversation = Connect("localhost", 4433)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA]

ext = {0 : # server_name extension ID

 lambda _: TLSExtension().create(0, bytearray(b'\xff'*4))}

node = node.add_child(ClientHelloGenerator(ciphers, extensions=ext))

node = node.add_child(ExpectAlert(AlertLevel.fatal,

 AlertDescription.decode_error))

alert_node = node

node = node.add_child(ExpectClose())

alert_node.next_sibling = ExpectClose()

While if we want to generate Client Hello message with invalid extension, we can simply
specify the ID of the extension, its payload and link it to the Client Hello (yes, I know that
I'm duplicating the info here, I'm still tweaking this part).

Since four bytes with all bits set is incorrect encoding of server_name extension, we can
expect the server to send us a specific Alert (fatal, decorde_error) or close the connection.

48/5624-10-2015

Handshake message format

Byte + 0 Byte + 1 Byte + 3 Byte + 4

Bytes 0..4
Message

type
Message length

Bytes 5..8 Version Random (32 bytes)

... Session_ID
length

Session_ID (0-32 bytes)

If we take a look at a Handshake protocol message format, there are 4 bytes that are
common to all of the messages – the Message type, and the 3 byte length field (rest is
beginning of a Client Hello)

Now, the protocol specifies, that the message length needs to match exactly the data
encoded, in the given message.

But many fileds in the messages have lengths of their own. So if we take a look here, the
session_ID itself may specifie a longer length (it's a byte, so up to 255) than the message
length specifies.

49/5624-10-2015

Truncated message test case

conversation = Connect("localhost", 4433)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA]

node = node.add_child(truncate_handshake(

 ClientHelloGenerator(ciphers),

 1))

node = node.add_child(ExpectAlert(AlertLevel.fatal,

 AlertDescription.decode_error))

alert_node = node

node = node.add_child(ExpectClose())

alert_node.next_sibling = ExpectClose()

So, how do we test if the server handles truncated messages correctly: simple, just wrap
message generator in truncate_handshake function and it will do the rest.

50/5624-10-2015

Padded message test case

conversation = Connect("localhost", 4433)

node = conversation

ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA]

node = node.add_child(pad_handshake(ClientHelloGenerator(ciphers),

 pad=bytearay(b'\xff\xff'))

node = node.add_child(ExpectAlert(AlertLevel.fatal,

 AlertDescription.decode_error))

alert_node = node

node = node.add_child(ExpectClose())

alert_node.next_sibling = ExpectClose()

Similarly for adding extra data at the end of a message.

There are also similar functions to modifiy arbitrary bytes of messages after they are
created (especially useful for Finished messages). In similar simple way, it is possible to
change behaviour of MAC or record padding for sending single message.

51/5624-10-2015

Features
● SSLv3, TLSv1.0, TLSv1.1 and TLSv1.2
● AES-CBC, AES-GCM, 3DES, RC4 and NULL ciphers
● MD5, SHA1, SHA256 and SHA384 HMAC
● RSA, SRP, SRP_RSA, DHE and DH_anon key exchange
● Encrypt-then-MAC
● TACK certificate pinning
● Client certificates
● Secure renegotiation
● TLS_FALLBACK_SCSV
● Next Protocol Negotiation
● ChaCha20/Poly1305 (soon™)
● ECDHE (soon™)

So the library currently supports most of the modern crypto, and some more obscure stuff.
ECDHE, still needs some work in form of automated test suite, but it already is
interoperable, working code. The ChaCha20 support is in even better shape, missing just
last round of code review.

52/5624-10-2015

Missing stuff
● Drafts of TLSv1.3
● Extended master secret
● PSK key exchange
● ALPN
● AES-CCM
● CAMELLIA (CBC and GCM)
● ECDSA, DSA certificates
● Drafts of Curve25519
● Raw keys, GPG keys
● Heartbeat protocol
● Kerberos

The most obvious things missing is the support for extended master secret, pre-shared keys
and ECDSA certificates. For testing Internet of Things gadgets we would need AES-CCM
support.

53/5624-10-2015

Missing stuff

● Test cases!

And of course I'm missing test cases (future templates). So if you have ideas for tests (the
more crazy the better), definitely please contact me.

54/5624-10-2015

Results

I haven't worked much on actual test cases, as for I've been focusing more on
features needed to write those test cases, I still managed to find 9 bugs and create
a simple reproducer for one complex issue in all three big TLS libraries: OpenSSL,
NSS and GnuTLS. Just in a week's time. Ironically, the OpenSSL developers were
the most responsive of them all.

55/5624-10-2015

Contributing
● https://github.com/tomato42/tlsfuzzer
● https://github.com/tomato42/tlslite-ng

● GPLv2 for tlsfuzzer
● LGPLv2 for tlslite-ng

● Tags review request and help wanted

The projects are on github, most of the code review is automated through Travis,
Landscape.io and configuration of pylint.

I'm also using the review request and help wanted tags to signify places where you can
jump in to help – and even questions like “why this code is like this” in code review are
welcome, as that means that either the code is too complex or has not enough comments,
so don't hold back because you think that you won't be able to contribute because you
don't know the project.

Questions?

Contact: hkario@redhat.com

Project: https://github.com/tomato42/tlsfuzzer

Questions?

