
Testing TLS

Hubert Kario
Quality Engineer
7-02-2015

2014

3/387-02-2015

Heartbleed

4/387-02-2015

OpenSSL CCS bug

5/387-02-2015

gotofail

6/387-02-2015

Certificate handling

7/387-02-2015

CVE-2014-6321 in
schannel

Testing

9/387-02-2015

Legacy code

10/387-02-2015

No testing
<20%

Test plans

Source: Farooq & Quadri, 2011

11/387-02-2015

No testing40%

Test tools

Source: Farooq & Quadri, 2011

12/387-02-2015

No testing
<50%

Code coverage tools

Source: Farooq & Quadri, 2011

13/387-02-2015

No testing

8%

Bad error handling

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

92%

14/387-02-2015

No testing

77%

Unit tests vs bugs

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

15/387-02-2015

OpenSSL NSS GnuTLS

Framework

N° tests 100-200 >7000 100-200

Negative tests

OSS TLS libraries

16/387-02-2015

0

20

40

60

80

100

120

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

17/387-02-2015

0

2

4

6

8

10

12

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

18/387-02-2015

0

0.2

0.4

0.6

0.8

1

1.2

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

Why is that?

20/387-02-2015

X.509 and ASN.1

21/387-02-2015

Invisible bugs

22/387-02-2015

Libraries and bad data

23/387-02-2015

Fuzzy testing

Fixing the problem

25/387-02-2015

Duplication of effort

26/387-02-2015

Existing fuzzers

27/387-02-2015

TLS testing and fuzzing

28/387-02-2015

Full TLS handshake

ClientHello -------->

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

<-------- ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

29/387-02-2015

TLS RSA handshake

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

30/387-02-2015

Simple fuzzing

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ClientKeyExchange

...

Encrypted PreMasterSecret

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

31/387-02-2015

Simple fuzzing

ClientHello -------->

ServerHello

Certificate

ServerKeyExchange

(DHE parameters)

signature

<-------- ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

32/387-02-2015

Message injection

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

Certificate

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

33/387-02-2015

Message injection

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ChangeCipherSpec

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

tlsfuzzer

35/387-02-2015

Architecture (planned)

tlslite

OpenSSL

NSS

GnuTLS

generator

fuzzer

executor

36/387-02-2015

Servers first

37/387-02-2015

Continuous Integration

Questions?

Feedback: http://devconf.cz/f/108

Contact: hkario@redhat.com

Project: https://github.com/tomato42/tlsfuzzer

http://devconf.cz/f/108
mailto:hkario@redhat.com
https://github.com/tomato42/tlsfuzzer
http://devconf.cz/f/108
mailto:hkario@redhat.com
https://github.com/tomato42/tlsfuzzer

Testing TLS

Hubert Kario
Quality Engineer
7-02-2015

2014

“Few” things happened last year. In short: every big cryptographic library had some
critical flaws.

3/387-02-2015

Heartbleed

Which was an OpenSSL bug in handling rarely used TLS protocol feature

4/387-02-2015

OpenSSL CCS bug

Where the Change Cipher Spec was accepted earlier

5/387-02-2015

gotofail

Apple Secure Transport bug in handling signatures of DHE and ECDHE key
exchange

6/387-02-2015

Certificate handling

Various less known bugs in NSS and GnuTLS related to certificate handling. NSS
would consider a bad signature to be ok while GnuTLS would consider a certificate
to have capabilities it did not have.

7/387-02-2015

CVE-2014-6321 in
schannel

Aka winshock

Microsoft schannel also patched vulnerability in which remote attacker can execute
code on server under SYSTEM privileges.

Testing

Why does this happen when those libraries are tested? “I mean, you are testing
them, don't you?” Yes, but...

9/387-02-2015

Legacy code

Let's be frank, there's a lot of legacy code out there. By legacy code I simply mean
code without unit tests. Not old code, not spaghetti code. But code without detailed
code coverage. Why? Unknown if it works at all (who have seen code that was
committed to repo that would never work?). Hard to refactor. Unknown expected
behavior

Working Effectively with Legacy Code, Michael Feathers

10/387-02-2015

No testing
<20%

Test plans

Source: Farooq & Quadri, 2011

A study in 2011 took a look on Open Source projects and found out that fewer than
20% use test plans.

Farooq & Quadri, 2011.

11/387-02-2015

No testing40%

Test tools

Source: Farooq & Quadri, 2011

Only about 40% use test tools.

Farooq & Quadri, 2011.

12/387-02-2015

No testing
<50%

Code coverage tools

Source: Farooq & Quadri, 2011

Less than 50% use code coverage.

Farooq & Quadri, 2011.

13/387-02-2015

No testing

8%

Bad error handling

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

92%

Last year's study of distributed file systems found out that just 8% of severe bugs
(ones that lead to data loss) were caused by logic errors. 92% were caused by
wrong or missing error handling.

 Yan, Luo, Zhuang, Rodrigues, et al, 2014. .

14/387-02-2015

No testing

77%

Unit tests vs bugs

Source: Yan, Luo, Zhuang, Rodrigues, et al, 2014

At the same time over 77% were reproducible with unit tests. Most of those that
weren't were caused by deficiencies in tooling used for unit tests.

Yan, Luo, Zhuang, Rodrigues, et al, 2014. .

15/387-02-2015

OpenSSL NSS GnuTLS

Framework

N° tests 100-200 >7000 100-200

Negative tests

OSS TLS libraries

How do OSS TLS libraries stake to that? Not well. OpenSSL doesn't follow good
testing practice and has minimal test coverage. GnuTLS only adds use of a test
framework to that. Only NSS looks good here, but let's compare them to some other
pieces of code.

16/387-02-2015

0

20

40

60

80

100

120

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

So let's compare the test coverage to other systems. The scale on the left is the
ratio of number of test cases to lines of code. Sqlite has 97k LOC and 10M test
cases so has ratio of 103.

Hmm, doesn't look like our libraries register on the scale... let's zoom a bit

17/387-02-2015

0

2

4

6

8

10

12

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

Still hard to see... let's zoom by a factor of ten again.

18/387-02-2015

0

0.2

0.4

0.6

0.8

1

1.2

Test coverage

OpenSSL GnuTLS NSS “decent” sqlite

Ahh, there we go!

What I'd call decent test coverage is one test case for every 3 to 8 lines of code, so
one eighth test case per line of code.

NSS has about 670kLOC and 7k test cases so about 0.01 test cases per line of
code.

OpenSSL and GnuTLS both have about 500kLOC so they don't register on the
scale still, we would have to zoom 3 times more for them to register.

Why is that?

So why is that security libraries don't perform more testing?

20/387-02-2015

X.509 and ASN.1

Both are arcane, support specifying the same information in multiple ways. The
most common vulnerability avenue. Thankfully used only for certificates and already
extensively tested by fuzzers and test suites.

https://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

21/387-02-2015

Invisible bugs

Timing server replies when sending invalid requests can recover secret information
– plaintext, private keys. Bugs in low level cryptography (especially asymmetric) are
far from obvious and require good understanding of maths involved to detect or test.

22/387-02-2015

Libraries and bad data

Other issue with testing is that libraries don't like sending invalid data. That makes it
hard to generate data for negative tests and requires creation of parallel
implementation of TLS just for testing.

23/387-02-2015

Fuzzy testing

Using pure fuzzy testing is problematic as TLS has very large problem space –
multiple valid inputs that depend on previous data. After handshake also encrypted
and checksummed – requires full TLS implementation in the fuzzer.

So basically a combination of “hard problem” and “understaffed projects”.

Fixing the problem

How can we fix this systemic problem?

25/387-02-2015

Duplication of effort

We want to avoid duplication of effort.

The one important point is that TLS is a network protocol in which the client has to
advertise its capabilities while the server can select only the features client
advertised. This allows for automatic detection of capabilities of the peer, as such
we can use a single test tool with multiple implementations.

26/387-02-2015

Existing fuzzers

So I've looked at existing network protocol fuzzers. Most promising were Sulley and
scapy. Unfortunately both suffer from the same problem: vary hard to keep and
update state needed to work with encryption. At the same time after testing one
message, you have to start a completely new connection. Sulley additionally has no
provisions for capturing and testing server output. That makes it completely useless
for testing protocol like TLS.

27/387-02-2015

TLS testing and fuzzing

While I'll be talking about fuzzing now, I mostly mean grey or whitebox testing with
actual fuzzing being only a cherry on top. The fuzzer will understand the protocol
implemented. In general TLS requires the peer to abort on receiving a malformed
message. But much more interesting is testing messages which are just slightly
wrong, or unexpected. To be able to test them we must have support for doing full
TLS handshake and implement significant portion of ciphers.

28/387-02-2015

Full TLS handshake

ClientHello -------->

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

<-------- ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

A full TLS handshake looks something like this. What is important is that the sent
ClientHello at the very beginning will influence our ability to properly decrypt and verify the
Finished data. So until we don't receive it we won't know if server really accepted our
connection.

29/387-02-2015

TLS RSA handshake

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

The connection is not so complex every time, for example handshake with RSA key
exchange looks like this and exchanges just 9 messages.

30/387-02-2015

Simple fuzzing

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ClientKeyExchange

...

Encrypted PreMasterSecret

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

Problem is that if I'm testing the encryption of premaster secret in
ClientKeyExchange, I won't know if the server detected the change until I receive
the Finished message! Server also won't accept a ClientKeyExchange before it
sends a ServerHello message.

31/387-02-2015

Simple fuzzing

ClientHello -------->

ServerHello

Certificate

ServerKeyExchange

(DHE parameters)

signature

<-------- ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

Other kind we can do is insert failures in signatures. For example in DHE key
exchange. This is a test for the gotofail bug in Apple Secure Transport.

32/387-02-2015

Message injection

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

Certificate

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

We can also inject messages which are not expected by the server. For example, here the
server didn't request a certificate (didn't send CertificateRequest) but the client is sending
one anyway.

The correct course of action would be to abort the connection. Unfortunately Microsoft
schannel not only didn't abort the connection but actually tried to parse the contents of
the message. This is what made the vulnerability from last year affect all servers. If they
didn't accept the message unconditionally it would be limited to servers using certificate
based client authentication.

33/387-02-2015

Message injection

ClientHello -------->

ServerHello

Certificate

<-------- ServerHelloDone

ChangeCipherSpec

ClientKeyExchange

ChangeCipherSpec

Finished -------->

ChangeCipherSpec

<-------- Finished

ApplicationData <--------> ApplicationData

On the other hand, if we inject a ChangeCipherSpec message we would detect the OpenSSL
CCS bug.

tlsfuzzer

As such, I've started working on a tool that would enable testing, verification and
optimally - fuzzing the TLS implementations.

35/387-02-2015

Architecture (planned)

tlslite

OpenSSL

NSS

GnuTLS

generator

fuzzer

executor

Major redesign – no available code atm.

Generator → conversation

Conversation → fuzzer

FuzzedConversation → executer

Executer →result

We start with generator, which takes known possible conversations (user created)
and creates a test flow (messages to send and expected server messages). This
conversation is then sent to fuzzer which sends it first to executor to verify if it is
accepted by server. Then it proceeds to change the conversation by mutating the
messages inserting new or dropping existing, executing it again. The key point is
that fuzzer understands the messages it is changing, so for example, addition of
extension with an unassigned ID should not cause change of behavior of server. On
the other hand, server sending extension that was not advertised by server should
cause connection abort.

36/387-02-2015

Servers first

For now I'll be focusing on testing servers (bigger attack surface, easier automation)
but the goal is to test both sides.

37/387-02-2015

Continuous Integration

The end goal is to have a system which can be easily used for Continuous
Integration of arbitrary TLS libraries.

Because all the test cases have attached expected result it's possible not only to
use it as a test for conformance with standards but also to continuously test the
implementation for regressions.

At the same time, with high fuzz ratio, it should be possible to find more obscure
bugs.

Questions?

Feedback: http://devconf.cz/f/108

Contact: hkario@redhat.com

Project: https://github.com/tomato42/tlsfuzzer

	Red Hat Services Presentation Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Red Hat Services Presentation Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

