/* * JoeyLib 3D * Copyright (C) 2019 Scott Duensing * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ // The code in this file is heavily influenced by // "Black Art of 3D Game Programming" by Andre LaMothe // Waite Group Press - ISBN 1-57169-004-2 // https://archive.org/details/BlackArt3DEBook //***TODO*** // Allow multiple objects to be loaded into a world // Store original vertex data so we can do local rotations and save them #include #include #include #include #include "j3d.h" #include "j3dtbls.h" #ifdef JOEY_IIGS segment "j3d"; #define M_PI 3.1415926 #define fabsf fabs #else #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpadded" #endif // Module global data static jint16 clipMinX = 0; static jint16 clipMinY = 0; static jint16 clipMinZ = 100; static jint16 clipMaxX = 319; static jint16 clipMaxY = 199; static jint16 clipMaxZ = 3000; static jint16 viewDistance = 250; static float ambientLight = 6; static j3VertexT cameraLocation; static j3FacingT cameraAngle; static j3VertexT sunLocation; #define ASPECT_RATIO (float)0.8 #define INVERSE_ASPECT_RATIO (float)1.25 #define HALF_SCREEN_WIDTH 160 #define HALF_SCREEN_HEIGHT 100 void _j3DrawSolid(j3ObjectT *o) { jint16 t; juint16 vertex1; juint16 vertex2; juint16 vertex3; float x1; float y1; float z1; float x2; float y2; float z2; float x3; float y3; float z3; for (t=0; ttriangleCount; t++) { // Is this triangle even visible? if (!o->triangles[t].visible) { continue; } vertex1 = o->triangles[t].index[0]; vertex2 = o->triangles[t].index[1]; vertex3 = o->triangles[t].index[2]; z1 = o->verticies[vertex1].camera.z; z2 = o->verticies[vertex2].camera.z; z3 = o->verticies[vertex3].camera.z; // Perform z clipping if ((z1 < clipMinZ && z2 < clipMinZ && z3 < clipMinZ) || (z1 > clipMaxZ && z2 > clipMaxZ && z3 > clipMaxZ)) { continue; } // Extract points of triangle x1 = o->verticies[vertex1].camera.x; y1 = o->verticies[vertex1].camera.y; x2 = o->verticies[vertex2].camera.x; y2 = o->verticies[vertex2].camera.y; x3 = o->verticies[vertex3].camera.x; y3 = o->verticies[vertex3].camera.y; // Screen position of points x1 = HALF_SCREEN_WIDTH + x1 * viewDistance / z1; y1 = HALF_SCREEN_HEIGHT - ASPECT_RATIO * y1 * viewDistance / z1; x2 = HALF_SCREEN_WIDTH + x2 * viewDistance / z2; y2 = HALF_SCREEN_HEIGHT - ASPECT_RATIO * y2 * viewDistance / z2; x3 = HALF_SCREEN_WIDTH + x3 * viewDistance / z3; y3 = HALF_SCREEN_HEIGHT - ASPECT_RATIO * y3 * viewDistance / z3; j3DrawTriangle2D((jint16)x1, (jint16)y1, (jint16)x2, (jint16)y2, (jint16)x3, (jint16)y3, o->triangles[t].shade); } } void j3DrawTriangle2D(jint16 x1, jint16 y1, jint16 x2,jint16 y2, jint16 x3, jint16 y3, jint16 color) { jint16 tempX; jint16 tempY; jint16 newX; // Horizontal or vertical lines? if ((x1 == x2 && x2 == x3) || (y1 == y2 && y2 == y3)) { return; } // Sort points in ascending Y order if (y2 < y1) { tempX = x2; tempY = y2; x2 = x1; y2 = y1; x1 = tempX; y1 = tempY; } // p1 and p2 are now in order if (y3 < y1) { tempX = x3; tempY = y3; x3 = x1; y3 = y1; x1 = tempX; y1 = tempY; } // Finally check y3 against y2 if (y3 < y2) { tempX = x3; tempY = y3; x3 = x2; y3 = y2; x2 = tempX; y2 = tempY; } // end if // Trivial rejection tests if (y3 < clipMinY || y1 > clipMaxY || (x1 < clipMinX && x2 < clipMinX && x3 < clipMinX) || (x1 > clipMaxX && x2 > clipMaxX && x3 > clipMaxX)) { return; } jlDrawColor((byte)color); // Is top of triangle flat? if (y1 == y2) { _j3DrawTriangleTop(x1, y1, x2, y2, x3, y3); } else if (y2 == y3) { _j3DrawTriangleBottom(x1, y1, x2, y2, x3, y3); } else { // General triangle that's needs to be broken up along long edge newX = x1 + (jint16)((float)(y2 - y1) * (float)(x3 - x1) / (float)(y3 - y1)); // Draw each sub-triangle _j3DrawTriangleBottom(x1, y1, newX, y2, x2, y2); _j3DrawTriangleTop(x2, y2, newX, y2, x3, y3); } } void _j3DrawTriangleBottom(jint16 x1, jint16 y1, jint16 x2,jint16 y2, jint16 x3, jint16 y3) { float dxRight; float dxLeft; float xs; float xe; float height; jint16 tempX; jint16 tempY; jint16 right; jint16 left; (void)y2; // Test order of x1 and x2 if (x3 < x2) { tempX = x2; x2 = x3; x3 = tempX; } // Compute deltas height = y3 - y1; dxLeft = (x2 - x1) / height; dxRight = (x3 - x1) / height; // Set starting points xs = (float)x1; xe = (float)x1 + (float)0.5; // Perform y clipping if (y1 < clipMinY) { // Compute new xs and ys xs = xs + dxLeft * (float)(-y1 + clipMinY); xe = xe + dxRight * (float)(-y1 + clipMinY); // Reset y1 y1 = clipMinY; } if (y3 > clipMaxY) { y3 = clipMaxY; } // Test if x clipping is needed if (x1 >= clipMinX && x1 <= clipMaxX && x2 >= clipMinX && x2 <= clipMaxX && x3 >= clipMinX && x3 <= clipMaxX) { // Draw the triangle for (tempY=y1; tempY<=y3; tempY++) { jlDrawLine((jint16)xs, tempY, (jint16)xe, tempY); // Adjust starting point and ending point xs += dxLeft; xe += dxRight; } } else { // Clip x axis with slower version for (tempY=y1; tempY<=y3; tempY++) { // Do x clip left = (jint16)xs; right = (jint16)xe; // Adjust starting point and ending point xs += dxLeft; xe += dxRight; // Clip line if (left < clipMinX) { left = clipMinX; if (right < clipMinX) { continue; } } if (right > clipMaxX) { right = clipMaxX; if (left > clipMaxX) { continue; } } // Draw jlDrawLine(left, tempY, right, tempY); } } } void _j3DrawTriangleTop(jint16 x1, jint16 y1, jint16 x2,jint16 y2, jint16 x3, jint16 y3) { float dxRight; float dxLeft; float xs; float xe; float height; jint16 tempX; jint16 tempY; jint16 right; jint16 left; (void)y2; // Test order of x1 and x2 if (x2 < x1) { tempX = x2; x2 = x1; x1 = tempX; } // Compute deltas height = y3 - y1; dxLeft = (x3 - x1) / height; dxRight = (x3 - x2) / height; // Set starting points xs = (float)x1; xe = (float)x2 + (float)0.5; // Perform y clipping if (y1 < clipMinY) { // Compute new xs and ys xs = xs + dxLeft * (float)(-y1 + clipMinY); xe = xe + dxRight * (float)(-y1 + clipMinY); // Reset y1 y1 = clipMinY; } if (y3 > clipMaxY) { y3=clipMaxY; } // Test if x clipping is needed if (x1 >= clipMinX && x1 <= clipMaxX && x2 >= clipMinX && x2 <= clipMaxX && x3 >= clipMinX && x3 <= clipMaxX) { // Draw the triangle for (tempY=y1; tempY<=y3; tempY++) { jlDrawLine((jint16)xs, tempY, (jint16)xe, tempY); // Adjust starting point and ending point xs += dxLeft; xe += dxRight; } } else { // Clip x axis for (tempY=y1; tempY<=y3; tempY++) { // Do x clip left = (jint16)xs; right = (jint16)xe; // Adjust starting point and ending point xs += dxLeft; xe += dxRight; // Clip line if (left < clipMinX) { left = clipMinX; if (right < clipMinX) { continue; } } if (right > clipMaxX) { right = clipMaxX; if (left > clipMaxX) { continue; } } // Draw jlDrawLine((jint16)left, tempY, (jint16)right, tempY); } } } void _j3DrawWireframePair(j3ObjectT *o, juint16 v1, juint16 v2) { float x1; float y1; float z1; float x2; float y2; float z2; jint16 ix1; jint16 iy1; jint16 ix2; jint16 iy2; j3VertexT v; v = o->verticies[v1].camera; x1 = v.x; y1 = v.y; z1 = v.z; v = o->verticies[v2].camera; x2 = v.x; y2 = v.y; z2 = v.z; x1 = HALF_SCREEN_WIDTH + x1 * viewDistance / z1; y1 = HALF_SCREEN_HEIGHT - ASPECT_RATIO * y1 * viewDistance / z1; x2 = HALF_SCREEN_WIDTH + x2 * viewDistance / z2; y2 = HALF_SCREEN_HEIGHT - ASPECT_RATIO * y2 * viewDistance / z2; ix1 = (jint16)x1; iy1 = (jint16)y1; ix2 = (jint16)x2; iy2 = (jint16)y2; if (_j3UtilClipLine(&ix1, &iy1, &ix2, &iy2)) { jlDrawLine(ix1, iy1, ix2, iy2); } } void _j3DrawWireframe(j3ObjectT *o) { jint16 t; // Current triangle for (t=0; ttriangleCount; t++) { _j3DrawWireframePair(o, o->triangles[t].index[0], o->triangles[t].index[1]); _j3DrawWireframePair(o, o->triangles[t].index[1], o->triangles[t].index[2]); _j3DrawWireframePair(o, o->triangles[t].index[2], o->triangles[t].index[0]); } } void j3MathCrossProduct3D(j3Vector3DT *u, j3Vector3DT *v, j3Vector3DT *normal) { // Compute the cross product between two vectors normal->x = (u->y*v->z - u->z*v->y); normal->y = -(u->x*v->z - u->z*v->x); normal->z = (u->x*v->y - u->y*v->x); } float j3MathDotProduct3D(j3Vector3DT *u, j3Vector3DT *v) { // Compute the dot product of two vectors return( (u->x * v->x) + (u->y * v->y) + (u->z * v->z)); } void j3MathMatrix4x4Identity(j3Matrix4x4T result) { result[0][0] = 1; result[0][1] = 0; result[0][2] = 0; result[0][3] = 0; result[1][0] = 0; result[1][1] = 1; result[1][2] = 0; result[1][3] = 0; result[2][0] = 0; result[2][1] = 0; result[2][2] = 1; result[2][3] = 0; result[3][0] = 0; result[3][1] = 0; result[3][2] = 0; result[3][3] = 1; } void j3MathMatrix4x4Mult(j3Matrix4x4T a, j3Matrix4x4T b, j3Matrix4x4T result) { result[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0]; result[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1]; result[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2]; result[0][3] = 0; result[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0]; result[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1]; result[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2]; result[1][3] = 0; result[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0]; result[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1]; result[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2]; result[2][3] = 0; result[3][0] = a[3][0] * b[0][0] + a[3][1] * b[1][0] + a[3][2] * b[2][0] + b[3][0]; result[3][1] = a[3][0] * b[0][1] + a[3][1] * b[1][1] + a[3][2] * b[2][1] + b[3][1]; result[3][2] = a[3][0] * b[0][2] + a[3][1] * b[1][2] + a[3][2] * b[2][2] + b[3][2]; result[3][3] = 1; } void j3MathMakeVector3D(j3VertexT *init, j3VertexT *term, j3Vector3DT *result) { // Create a vector from two points in 3D space result->x = term->x - init->x; result->y = term->y - init->y; result->z = term->z - init->z; } float j3MathVectorMagnatude3D(j3Vector3DT *v) { // Compute the magnitude of a vector return((float)sqrt((double)(v->x * v->x + v->y * v->y + v->z * v->z))); } void _j3ObjectReset(j3ObjectT *o) { o->position.x = 0; o->position.y = 0; o->position.z = 0; o->rotation.x = 0; o->rotation.y = 0; o->rotation.z = 0; o->scale.x = 1; o->scale.y = 1; o->scale.z = 1; o->positionDirty = true; o->rotationDirty = true; o->scaleDirty = true; } void _j3ObjectUpdate(j3ObjectT *o) { jint16 x; jint16 y; jint16 z; jint16 i; juint16 vertex0; juint16 vertex1; juint16 vertex2; float dot; float intensity; j3Vector3DT u; j3Vector3DT v; j3Vector3DT normal; j3Vector3DT sight; byte axis = 0; j3Matrix4x4T rotateX; j3Matrix4x4T rotateY; j3Matrix4x4T rotateZ; j3Matrix4x4T final; j3Matrix4x4T temp; // === ROTATION === if (o->rotationDirty) { // Rotation being dirty means we also need to update position later o->positionDirty = true; x = (jint16)o->rotation.x; y = (jint16)o->rotation.y; z = (jint16)o->rotation.z; j3MathMatrix4x4Identity(final); // What angles are we rotating on? By knowing this we can optimize some. if (x) axis += 4; if (y) axis += 2; if (z) axis += 1; switch (axis) { case 1: // Final matrix = z final[0][0] = cos_table[z]; final[0][1] = sin_table[z]; final[1][0] = -sin_table[z]; final[1][1] = cos_table[z]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.y * final[1][0]; o->verticies[i].world.y = o->verticies[i].local.x * final[0][1] + o->verticies[i].local.y * final[1][1]; o->verticies[i].world.z = o->verticies[i].local.z; } break; case 2: // Final matrix = y final[0][0] = cos_table[y]; final[0][2] = -sin_table[y]; final[2][0] = sin_table[y]; final[2][2] = cos_table[y]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.z * final[2][0]; o->verticies[i].world.y = o->verticies[i].local.y; o->verticies[i].world.z = o->verticies[i].local.x * final[0][2] + o->verticies[i].local.z * final[2][2]; } break; case 3: // Final matrix = y * z final[0][0] = cos_table[y] * cos_table[z]; final[0][1] = cos_table[y] * sin_table[z]; final[0][2] = -sin_table[y]; final[1][0] = -sin_table[z]; final[1][1] = cos_table[z]; final[2][0] = sin_table[y] * cos_table[z]; final[2][1] = sin_table[y] * sin_table[z]; final[2][2] = cos_table[y]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.y * final[1][0] + o->verticies[i].local.z * final[2][0]; o->verticies[i].world.y = o->verticies[i].local.x * final[0][1] + o->verticies[i].local.y * final[1][1] + o->verticies[i].local.z * final[2][1]; o->verticies[i].world.z = o->verticies[i].local.x * final[0][2] + o->verticies[i].local.z * final[2][2]; } break; case 4: // Final matrix = x final[1][1] = cos_table[x]; final[1][2] = sin_table[x]; final[2][1] = -sin_table[x]; final[2][2] = cos_table[x]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x; o->verticies[i].world.y = o->verticies[i].local.y * final[1][1] + o->verticies[i].local.z * final[2][1]; o->verticies[i].world.z = o->verticies[i].local.y * final[1][2] + o->verticies[i].local.z * final[2][2]; } break; case 5: // Final matrix = x * z final[0][0] = cos_table[z]; final[0][1] = sin_table[z]; final[1][0] = -cos_table[x]*sin_table[z]; final[1][1] = cos_table[x]*cos_table[z]; final[1][2] = sin_table[x]; final[2][0] = sin_table[x]*sin_table[z]; final[2][1] = -sin_table[x]*cos_table[z]; final[2][2] = cos_table[x]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.y * final[1][0] + o->verticies[i].local.z * final[2][0]; o->verticies[i].world.y = o->verticies[i].local.x * final[0][1] + o->verticies[i].local.y * final[1][1] + o->verticies[i].local.z * final[2][1]; o->verticies[i].world.z = o->verticies[i].local.y * final[1][2] + o->verticies[i].local.z * final[2][2]; } break; case 6: // Final matrix = x * y final[0][0] = cos_table[y]; final[0][2] = -sin_table[y]; final[1][0] = sin_table[x] * sin_table[y]; final[1][1] = cos_table[x]; final[1][2] = sin_table[x] * cos_table[y]; final[2][0] = cos_table[x] * sin_table[y]; final[2][1] = -sin_table[x]; final[2][2] = cos_table[x] * cos_table[y]; for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.y * final[1][0] + o->verticies[i].local.z * final[2][0]; o->verticies[i].world.y = o->verticies[i].local.y * final[1][1] + o->verticies[i].local.z * final[2][1]; o->verticies[i].world.z = o->verticies[i].local.x * final[0][2] + o->verticies[i].local.y * final[1][2] + o->verticies[i].local.z * final[2][2]; } break; case 7: // Final matrix = x * y * z j3MathMatrix4x4Identity(rotateX); rotateX[1][1] = cos_table[x]; rotateX[1][2] = sin_table[x]; rotateX[2][1] = -sin_table[x]; rotateX[2][2] = cos_table[x]; j3MathMatrix4x4Identity(rotateY); rotateY[0][0] = cos_table[y]; rotateY[0][2] = -sin_table[y]; rotateY[2][0] = sin_table[y]; rotateY[2][2] = cos_table[y]; j3MathMatrix4x4Identity(rotateZ); rotateZ[0][0] = cos_table[z]; rotateZ[0][1] = sin_table[z]; rotateZ[1][0] = -sin_table[z]; rotateZ[1][1] = cos_table[z]; j3MathMatrix4x4Mult(rotateX, rotateZ, temp); j3MathMatrix4x4Mult(temp, rotateZ, final); for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].local.x * final[0][0] + o->verticies[i].local.y * final[1][0] + o->verticies[i].local.z * final[2][0]; o->verticies[i].world.y = o->verticies[i].local.x * final[0][1] + o->verticies[i].local.y * final[1][1] + o->verticies[i].local.z * final[2][1]; o->verticies[i].world.z = o->verticies[i].local.x * final[0][2] + o->verticies[i].local.y * final[1][2] + o->verticies[i].local.z * final[2][2]; } break; default: break; } } // === SCALE & TRANSLATION === if (o->positionDirty || o->scaleDirty) { for (i=0; ivertexCount; i++) { o->verticies[i].world.x = o->verticies[i].world.x * o->scale.x + o->position.x; o->verticies[i].world.y = o->verticies[i].world.y * o->scale.y + o->position.y; o->verticies[i].world.z = o->verticies[i].world.z * o->scale.z + o->position.z; } } // === CAMERA SPACE === //***TODO*** Move this? for (i=0; ivertexCount; i++) { o->verticies[i].camera = o->verticies[i].world; } // === REMOVE BACKFACES & LIGHT === for (i=0; itriangleCount; i++) { // If the scale changed, we need a new normal length if (o->scaleDirty) { _j3ObjectUpdateNormalLength(o, (juint16)i); } // If it's two sided, there are no backfaces if (!o->triangles[i].twoSided) { // Compute two vectors on polygon that have the same intial points vertex0 = o->triangles[i].index[0]; vertex1 = o->triangles[i].index[1]; vertex2 = o->triangles[i].index[2]; // Vector u = v0->v1 j3MathMakeVector3D((j3VertexT *)&o->verticies[vertex0].world, (j3VertexT *)&o->verticies[vertex1].world, (j3Vector3DT *)&u); // Vector v = v0->v2 j3MathMakeVector3D((j3VertexT *)&o->verticies[vertex0].world, (j3VertexT *)&o->verticies[vertex2].world, (j3Vector3DT *)&v); // Normal v x u j3MathCrossProduct3D((j3Vector3DT *)&v, (j3Vector3DT *)&u, (j3Vector3DT *)&normal); // Compute the line of sight vector, since all coordinates are world all // object vertices are already relative to (0,0,0), thus sight.x = cameraLocation.x - o->verticies[vertex0].world.x; sight.y = cameraLocation.y - o->verticies[vertex0].world.y; sight.z = cameraLocation.z - o->verticies[vertex0].world.z; // Compute the dot product between line of sight vector and normal to surface dot = j3MathDotProduct3D((j3Vector3DT *)&normal, (j3Vector3DT *)&sight); // Is the surface visible if (dot > 0) { // Set visible flag o->triangles[i].visible = true; // Compute light intensity if needed if (o->triangles[i].lit) { // Compute the dot product between the light source vector and normal vector to surface dot = j3MathDotProduct3D((j3Vector3DT *)&normal, (j3Vector3DT *)&sunLocation); // Test if light ray is reflecting off surface if (dot > 0) { intensity = ambientLight + (dot * (o->triangles[i].normalLength)); // Test if intensity has overflowed if (intensity > 15) { intensity = 15; } // Intensity now varies from 0-1, 0 being black or grazing and 1 being // totally illuminated. use the value to index into color table o->triangles[i].shade = o->triangles[i].color - (jint16)intensity; } else { o->triangles[i].shade = o->triangles[i].color - (jint16)ambientLight; } } else { // Constant shading - simply assign color to shade o->triangles[i].shade = o->triangles[i].color; } } else { o->triangles[i].visible = false; } } else { // Triangle is always visible i.e. two sided o->triangles[i].visible = true; // Perform shading calculation if (o->triangles[i].lit) { // Compute two vectors on polygon that have the same intial points vertex0 = o->triangles[i].index[0]; vertex1 = o->triangles[i].index[1]; vertex2 = o->triangles[i].index[2]; // Vector u = v0->v1 j3MathMakeVector3D((j3VertexT *)&o->verticies[vertex0].world, (j3VertexT *)&o->verticies[vertex1].world, (j3Vector3DT *)&u); // Vector v = v0->v2 j3MathMakeVector3D((j3VertexT *)&o->verticies[vertex0].world, (j3VertexT *)&o->verticies[vertex2].world, (j3Vector3DT *)&v); // Normal v x u j3MathCrossProduct3D((j3Vector3DT *)&v, (j3Vector3DT *)&u, (j3Vector3DT *)&normal); // Compute the dot product between the light source vector and normal vector to surface dot = j3MathDotProduct3D((j3Vector3DT *)&normal, (j3Vector3DT *)&sunLocation); // Is light ray is reflecting off surface if (dot > 0) { // cos 0 = (u.v)/|u||v| or intensity = ambientLight + (dot * (o->triangles[i].normalLength)); // test if intensity has overflowed if (intensity > 15) { intensity = 15; } // intensity now varies from 0-1, 0 being black or grazing and 1 being // totally illuminated. use the value to index into color table o->triangles[i].shade = o->triangles[i].color - (jint16)intensity; } else { o->triangles[i].shade = o->triangles[i].color - (jint16)ambientLight; } } else { // Constant shading and simply assign color to shade o->triangles[i].shade = o->triangles[i].color; } } } o->positionDirty = false; o->rotationDirty = false; o->scaleDirty = false; } void _j3ObjectUpdateNormalLength(j3ObjectT *object, juint16 triangle) { juint16 vertex0; juint16 vertex1; juint16 vertex2; j3Vector3DT u; j3Vector3DT v; j3Vector3DT normal; // Compute length of the two co-planer edges of the polygon, since they will be used in the computation of the dot-product later vertex0 = object->triangles[triangle].index[0]; vertex1 = object->triangles[triangle].index[1]; vertex2 = object->triangles[triangle].index[2]; j3MathMakeVector3D((j3VertexT *)&object->verticies[vertex0].local, (j3VertexT *)&object->verticies[vertex1].local, (j3Vector3DT *)&u); j3MathMakeVector3D((j3VertexT *)&object->verticies[vertex0].local, (j3VertexT *)&object->verticies[vertex2].local, (j3Vector3DT *)&v); j3MathCrossProduct3D((j3Vector3DT *)&v, (j3Vector3DT *)&u, (j3Vector3DT *)&normal); // Compute magnitude of normal, take its inverse and multiply it by // 15, this will change the shading calculation of 15*dp/normal into // dp*normal_length, removing one division object->triangles[triangle].normalLength = (float)15.0 / j3MathVectorMagnatude3D((j3Vector3DT *)&normal); } bool _j3UtilClipLine(jint16 *x1, jint16 *y1, jint16 *x2, jint16 *y2) { jint16 xi; jint16 yi; float dx; float dy; bool point1 = false; // End points visible? bool point2 = false; bool rightEdge = false; // Which edges are the endpoints beyond? bool leftEdge = false; bool topEdge = false; bool bottomEdge = false; bool success = false; // Did we successfully clip this line? // Is the line completely visible? point1 = ((*x1 >= clipMinX) && (*x1 <= clipMaxX) && (*y1 >= clipMinY) && (*y1 <= clipMaxY)); point2 = ((*x2 >= clipMinX) && (*x2 <= clipMaxX) && (*y2 >= clipMinY) && (*y2 <= clipMaxY)); if (point1 && point2) { return(true); } // Is the line is completely invisible? if (!point1 && !point2) { // Test to see if each endpoint is on the same side of one of // the bounding planes created by each clipping region boundary if (((*x1clipMaxX) && (*x2>clipMaxX)) || // right ((*y1clipMaxY) && (*y2>clipMaxY))) { // below // No need to draw line return(false); } // if we got here we have the special case where the line cuts into and // out of the clipping region //return(false); } // Either endpoint is in clipping region if (point1 || (!point1 && !point2)) { // Find deltas dx = *x2 - *x1; dy = *y2 - *y1; // Find which boundary line needs to be clipped against if (*x2 > clipMaxX) { // Flag right edge rightEdge = true; // Find intersection with right edge if (fabsf(dx) > FLT_EPSILON) { // dx != 0 yi = (jint16)((float)0.5 + (dy / dx) * (clipMaxX - *x1) + *y1); } else { yi = -1; // Invalidate intersection } } else if (*x2 < clipMinX) { // Flag left edge leftEdge = true; // Find intersection with left edge if (fabsf(dx) > FLT_EPSILON) { // dx != 0 yi = (jint16)((float)0.5 + (dy / dx) * (clipMinX - *x1) + *y1); } else { yi = -1; // Invalidate intersection } } if (*y2 > clipMaxY) { // Flag bottom edge bottomEdge = true; // Find intersection with right edge if (fabsf(dy) > FLT_EPSILON) { // dy != 0 xi = (jint16)((float)0.5 + (dx / dy) * (clipMaxY - *y1) + *x1); } else { xi = -1; // Invalidate inntersection } } else if (*y2 < clipMinY) { // Flag top edge topEdge = true; // Find intersection with top edge if (fabsf(dy) > FLT_EPSILON) { // dy != 0 xi = (jint16)((float)0.5 + (dx / dy) * (clipMinY - *y1) + *x1); } else { xi = -1; // Invalidate intersection } } // We know where the line passed through // FInd which edge is the proper intersection if (rightEdge && (yi >= clipMinY && yi <= clipMaxY)) { *x2 = clipMaxX; *y2 = yi; success = true; } else if (leftEdge && (yi >= clipMinY && yi <= clipMaxY)) { *x2 = clipMinX; *y2 = yi; success = true; } if (bottomEdge && (xi >= clipMinX && xi <= clipMaxX)) { *x2 = xi; *y2 = clipMaxY; success = true; } else if (topEdge && (xi >= clipMinX && xi <= clipMaxX)) { *x2 = xi; *y2 = clipMinY; success = true; } } // Reset edge flags rightEdge = false; leftEdge = false; topEdge = false; bottomEdge = false; // Test second endpoint if (point2 || (!point1 && !point2)) { // Find deltas dx = *x1 - *x2; dy = *y1 - *y2; // Find which boundary line needs to be clipped against if (*x1 > clipMaxX) { // Flag right edge rightEdge = true; // Find intersection with right edge if (fabsf(dx) > FLT_EPSILON) { // dx != 0 yi = (jint16)((float)0.5 + (dy / dx) * (clipMaxX - *x2) + *y2); } else { yi = -1; // Invalidate inntersection } } else if (*x1 < clipMinX) { // Flag left edge leftEdge = true; // Find intersection with left edge if (fabsf(dx) > FLT_EPSILON) { // dx != 0 yi = (jint16)((float)0.5 + (dy / dx) * (clipMinX - *x2) + *y2); } else { yi = -1; // Invalidate intersection } } if (*y1 > clipMaxY) { // Flag bottom edge bottomEdge = true; // Find intersection with right edge if (fabsf(dy) > FLT_EPSILON) { // dy != 0 xi = (jint16)((float)0.5 + (dx / dy) * (clipMaxY - *y2) + *x2); } else { xi = -1; // invalidate inntersection } } else if (*y1 < clipMinY) { // Flag top edge topEdge = true; // Find intersection with top edge if (fabsf(dy) > FLT_EPSILON) { // dy != 0 xi = (jint16)((float)0.5 + (dx / dy) * (clipMinY - *y2) + *x2); } else { xi = -1; // invalidate inntersection } } // We know where the line passed through // Find which edge is the proper intersection if (rightEdge && (yi >= clipMinY && yi <= clipMaxY)) { *x1 = clipMaxX; *y1 = yi; success = true; } else if (leftEdge && (yi >= clipMinY && yi <= clipMaxY)) { *x1 = clipMinX; *y1 = yi; success = true; } if (bottomEdge && (xi >= clipMinX && xi <= clipMaxX)) { *x1 = xi; *y1 = clipMaxY; success = true; } else if (topEdge && (xi >= clipMinX && xi <= clipMaxX)) { *x1 = xi; *y1 = clipMinY; success = true; } } return(success); } void j3UtilShutdown(void) { // Nothing yet } void j3UtilStartup(void) { cameraLocation.x = 0; cameraLocation.y = 0; cameraLocation.z = 0; cameraAngle.x = 0; cameraAngle.y = 0; cameraAngle.z = 0; sunLocation.x = (float)-0.913913; sunLocation.y = (float) 0.389759; sunLocation.z = (float)-0.113369; } void _j3WorldFree(j3WorldT **world) { int x; if ((*world)) { for (x=0; x<(*world)->objectCount; x++) { if ((*world)->objects[x].triangles) { jlFree((*world)->objects[x].triangles); } if ((*world)->objects[x].verticies) { jlFree((*world)->objects[x].verticies); } } if ((*world)->objects) { jlFree((*world)->objects); } jlFree(*world); } } bool _j3WorldLoad(j3WorldT **world, char *file) { juint16 x; juint16 y; juint16 z; byte buffer[4]; FILE *in; bool failed = false; in = fopen(jlUtilMakePathname(file, "j3d"), "rb"); // Did we find the file? if (in == NULL) { // Nope. return false; } // Do we have a world? if (*world != NULL) { // Free this one j3WorldFree(world); } // Allocate world object *world = (j3WorldT *)jlMalloc(sizeof(j3WorldT)); if (*world) { // Initialize world object & create an initial object to read data into (*world)->objectCount = 0;; (*world)->objects = NULL; // Is this a valid world file? if (fread(buffer, sizeof(byte), 4, in) == 4) { if ((buffer[0] == 'J') && (buffer[1] == '3') && (buffer[2] == 'D') && (buffer[3] <= 0)) { // Get object count if (fread(&(*world)->objectCount, sizeof(juint16), 1, in) == 1) { // Allocate memory for objects (*world)->objects = (j3ObjectT *)jlMalloc(sizeof(j3ObjectT) * (*world)->objectCount); if ((*world)->objects) { // Iterate across objects in file for (x=0; x<(*world)->objectCount; x++) { // Get vertex count if (fread(&(*world)->objects[x].vertexCount, sizeof(juint16), 1, in) == 1) { // Allocate memory for vertex data (*world)->objects->verticies = (j3CoordinatesT *)jlMalloc(sizeof(j3CoordinatesT) * (*world)->objects[x].vertexCount); if ((*world)->objects->verticies) { // Iterate and read verticies for (y=0; y<(*world)->objects[x].vertexCount; y++) { // Read one at a time in case the struct gets padded if (fread(&(*world)->objects[x].verticies[y].local.x, sizeof(float), 1, in) != 1) { failed = true; break; } if (fread(&(*world)->objects[x].verticies[y].local.y, sizeof(float), 1, in) != 1) { failed = true; break; } if (fread(&(*world)->objects[x].verticies[y].local.z, sizeof(float), 1, in) != 1) { failed = true; break; } } } } else { // Failed to get vertex memory failed = true; } if (!failed) { // Get triangle count if (fread(&(*world)->objects[x].triangleCount, sizeof(juint16), 1, in) == 1) { // Allocate memory for triangle data (*world)->objects->triangles = (j3TriangleT *)jlMalloc(sizeof(j3TriangleT) * (*world)->objects[x].triangleCount); if ((*world)->objects->triangles) { // Iterate and read triangles for (y=0; y<(*world)->objects[x].triangleCount; y++) { // Read one at a time in case the struct gets padded for (z=0; z<3; z++) { if (fread(&(*world)->objects[x].triangles[y].index[z], sizeof(juint16), 1, in) != 1) { failed = true; break; } } if (failed) break; _j3ObjectUpdateNormalLength(&(*world)->objects[x], y); // Triangles begin life un-lit (*world)->objects[x].triangles[y].lit = false; //***TODO*** All triangles are one-sided for now (*world)->objects[x].triangles[y].twoSided = false; //***TODO*** All triangles are white for now (*world)->objects[x].triangles[y].color = 15; } } else { // Failed to get triangle memory failed = true; } } } if (!failed) { _j3ObjectReset(&(*world)->objects[x]); } else { break; // Stop iterating } } // object iterator } // objects alloc } // Object count } // Valid file } // Read header } // world alloc // Finished! Clean up. fclose(in); return !failed; } #ifndef JOEY_IIGS #pragma GCC diagnostic pop #endif